232 research outputs found

    Evaluation of microRNA expression in patient bone marrow aspirate slides

    Get PDF
    <div><p>Like formalin fixed paraffin embedded (FFPE) tissues, archived bone marrow aspirate slides are an abundant and untapped resource of biospecimens that could enable retrospective molecular studies of disease. Historically, RNA obtained from slides is limited in utility because of their low quality and highly fragmented nature. MicroRNAs are small (≈22 nt) non-coding RNA that regulate gene expression, and are speculated to preserve well in FFPE tissue. Here we investigate the use of archived bone marrow aspirate slides for miRNA expression analysis in paediatric leukaemia. After determining the optimal method of miRNA extraction, we used TaqMan qRT-PCR to identify reference miRNA for normalisation of other miRNA species. We found hsa-miR-16 and hsa-miR-26b to be the most stably expressed between lymphoblastoid cell lines, primary bone marrow aspirates and archived samples. We found the average fold change in expression of hsa-miR-26b and two miRNA reportedly dysregulated in leukaemia (hsa-miR-128a, hsa-miR-223) was <0.5 between matching archived slide and bone marrow aspirates. Differential expression of hsa-miR-128a and hsa-miR-223 was observed between leukaemic and non-leukaemic bone marrow from archived slides or flash frozen bone marrow. The demonstration that archived bone marrow aspirate slides can be utilized for miRNA expression studies offers tremendous potential for future investigations into the role miRNA play in the development and long term outcome of hematologic, as well as non-hematologic, diseases.</p> </div

    Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA

    Get PDF
    AbstractIllumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species

    Adolescence and the next generation

    Get PDF
    Adolescent growth and social development shape the early development of offspring from preconception through to the post-partum period through distinct processes in males and females. At a time of great change in the forces shaping adolescence, including the timing of parenthood, investments in today\u27s adolescents, the largest cohort in human history, will yield great dividends for future generations

    A distinct DNA methylation signature defines pediatric pre-B cell acute lymphoblastic leukemia

    Full text link
    Pre-B cell acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy and remains one of the highest causes of childhood mortality. Despite this, the mechanisms leading to disease remain poorly understood. We asked if recurrent aberrant DNA methylation plays a role in childhood ALL and have defined a genome-scale DNA methylation profile associated with the ETV6-RUNX1 subtype of pediatric ALL. Archival bone marrow smears from 19 children collected at diagnosis and remission were used to derive a disease specific DNA methylation profile. The gene signature was confirmed in an independent cohort of 86 patients. A further 163 patients were analyzed for DNA methylation of a three gene signature. We found that the DNA methylation signature at diagnosis was unique from remission. Fifteen loci were sufficient to discriminate leukemia from disease-free samples and purified CD34+ cells. DNA methylation of these loci was recurrent irrespective of cytogenetic subtype of pre-B cell ALL. We show that recurrent aberrant genomic methylation is a common feature of pre-B ALL, suggesting a shared pathway for disease development. By revealing new DNA methylation markers associated with disease, this study has identified putative targets for development of novel epigenetic-based therapies

    Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres

    Get PDF
    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)–related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)–directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naïve templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified

    Многоцентровое исследование эффективности неоадъювантной терапии САРОХ/бевацизумаб у неоперабельных больных с метастазами колоректального рака в печени

    No full text
    Проанализированы результаты многоцентрового исследования II фазы, в котором показана эффективность и безопасность комбинации режима CAPOX с бевацизумабом при неоадъювантной терапии не подлежащих хирургическому лечению пациентов с метастазами колоректального рака в печени: резектабельность последних была достигнута в 44% случаев, 12-месячная выживаемость: общая – 96%, безрецидивная – 50%. Ключевые слова: колоректальный рак, метастазы в печени, бевацизумаб, капецитабин, оксалиплатин.The results of multicentre study of II phase are analyzed. The efficacy and safety of combined regimen CAPOX + bevacizumab in adjuvant therapy of patients not selected for upfront resection and with colorectal cancer metastasis in liver is demonstrated. The respectability was achieved in 44% of cases, 12-month survival, overall, survival 96%, without relapse 50%. Key Words: bevacizumab, capecitabine, colorectal cancer, liver metastases, oxaliplati

    Investigating the Potential Role of Genetic and Epigenetic Variation of DNA Methyltransferase Genes in Hyperplastic Polyposis Syndrome

    Get PDF
    BACKGROUND: Hyperplastic Polyposis Syndrome (HPS) is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC). At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP), potentially linked to aberrant DNA methyltransferase (DNMT) activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT), and negative regulators of Wnt signaling (such as WIF1). In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. METHODS: We utilized high resolution melting (HRM) analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. RESULTS: No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene) was over-represented in cases with HPS (p<0.01) compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053). BRAF mutations were common (11 out of 21 polyps), whilst KRAS mutations were identified in 4 of 21 polyps. CONCLUSIONS: Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.Musa Drini, Nicholas C. Wong, Hamish S. Scott, Jeffrey M. Craig, Alexander Dobrovic, Chelsee A. Hewitt, Christofer Dow, Joanne P. Young, Mark A. Jenkins, Richard Saffery and Finlay A. Macra

    Neighbourhood socioeconomic circumstances, adiposity and cardiometabolic risk measures in children with severe obesity

    Get PDF
    Background: It has recently been shown that neighbourhood socioeconomic disadvantage in childhood is associated with obesity, hypertension, fatty liver, and type 2 diabetes in adulthood. However, it is largely unknown whether neighbourhood socioeconomic circumstances are important predictors of adiposity and associated measures in children, especially in those with severe obesity. Therefore, we evaluated the associations between neighbourhood socioeconomic factors with the severity of obesity, and related cardiometabolic risk factors in a cohort of obese children.Methods: The Childhood Overweight BioRepository of Australia (COBRA) cohort study comprises 444 children (mean age 11.1 years, mean BMI z-score 2.5). Neighbourhood socioeconomic advantage/disadvantage was evaluated based on postcode information by the national Australian Socio-Economic Indexes for Areas (SEIFA) scores. Participants/parents also completed self-administered questionnaires on neighbourhood related facilities, family education and family income.Results: In analyses adjusted for age, sex and pubertal status, SEIFA indicating neighbourhood education/occupation was negatively associated with BMI, waist circumference and body fat%. Higher family education was associated with lower BMI. Neighbourhood walkability was related to lower waist circumference. Good shopping facilities in the neighbourhood were associated with increased risk of dyslipidemia and fatty liver, and the existence of parks and playgrounds nearby was related to dyslipidemia.Conclusions: The present data suggest that neighbourhood-related issues are associated with less severe adiposity among children with established obesity. Concerning cardiometabolic risk factors, shopping facilities were related to dyslipidemia and fatty liver. These findings suggest that increased awareness and efforts are needed to diminish socioeconomic inequalities between neighbourhoods.</p

    DNA content of a functioning chicken kinetochore

    Get PDF
    © The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg

    Association of medically assisted reproduction with offspring cord blood DNA methylation across cohorts

    Get PDF
    STUDY QUESTION: Is cord blood DNA methylation associated with having been conceived by medically assisted reproduction? SUMMARY ANSWER: This study does not provide strong evidence of an association of conception by medically assisted reproduction with variation in infant blood cell DNA methylation. WHAT IS KNOWN ALREADY: Medically assisted reproduction consists of procedures used to help infertile/subfertile couples conceive, including ART. Due to its importance in gene regulation during early development programming, DNA methylation and its perturbations associated with medically assisted reproduction could reveal new insights into the biological effects of assisted reproductive technologies and potential adverse offspring outcomes. STUDY DESIGN, SIZE, DURATION: We investigated the association of DNA methylation and medically assisted reproduction using a case-control study design (N = 205 medically assisted reproduction cases and N = 2439 naturally conceived controls in discovery cohorts; N = 149 ART cases and N = 58 non-ART controls in replication cohort). PARTICIPANTS/MATERIALS, SETTINGS, METHODS: We assessed the association between medically assisted reproduction and DNA methylation at birth in cord blood (205 medically assisted conceptions and 2439 naturally conceived controls) at >450 000 CpG sites across the genome in two sub-samples of the UK Avon Longitudinal Study of Parents and Children (ALSPAC) and two sub-samples of the Norwegian Mother, Father and Child Cohort Study (MoBa) by meta-analysis. We explored replication of findings in the Australian Clinical review of the Health of adults conceived following Assisted Reproductive Technologies (CHART) study (N = 149 ART conceptions and N = 58 controls). MAIN RESULTS AND THE ROLE OF CHANCE: The ALSPAC and MoBa meta-analysis revealed evidence of association between conception by medically assisted reproduction and DNA methylation (false-discovery-rate-corrected P-value < 0.05) at five CpG sites which are annotated to two genes (percentage difference in methylation per CpG, cg24051276: Beta = 0.23 (95% CI 0.15,0.31); cg00012522: Beta = 0.47 (95% CI 0.31, 0.63); cg17855264: Beta = 0.31 (95% CI 0.20, 0.43); cg17132421: Beta = 0.30 (95% CI 0.18, 0.42); cg18529845: Beta = 0.41 (95% CI 0.25, 0.57)). Methylation at three of these sites has been previously linked to cancer, aging, HIV infection and neurological diseases. None of these associations replicated in the CHART cohort. There was evidence of a functional role of medically assisted reproduction-induced hypermethylation at CpG sites located within regulatory regions as shown by putative transcription factor binding and chromatin remodelling. LIMITATIONS, REASONS FOR CAUTIONS: While insufficient power is likely, heterogeneity in types of medically assisted reproduction procedures and between populations may also contribute. Larger studies might identify replicable variation in DNA methylation at birth due to medically assisted reproduction. WIDER IMPLICATIONS OF THE FINDINGS: Newborns conceived with medically assisted procedures present with divergent DNA methylation in cord blood white cells. If these associations are true and causal, they might have long-term consequences for offspring health. STUDY FUNDING/COMPETING INTERESTS(S): This study has been supported by the US National Institute of Health (R01 DK10324), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 669545, European Union's Horizon 2020 research and innovation programme under Grant agreement no. 733206 (LifeCycle) and the NIHR Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Methylation data in the ALSPAC cohort were generated as part of the UK BBSRC funded (BB/I025751/1 and BB/I025263/1) Accessible Resource for Integrated Epigenomic Studies (ARIES, http://www.ariesepigenomics.org.uk). D.C., J.J., C.L.R. D.A.L and H.R.E. work in a Unit that is supported by the University of Bristol and the UK Medical Research Council (Grant nos. MC_UU_00011/1, MC_UU_00011/5 and MC_UU_00011/6). B.N. is supported by an NHMRC (Australia) Investigator Grant (1173314). ALSPAC GWAS data were generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (Contract no. N01-ES-75558), NIH/NINDS (Grant nos. (i) UO1 NS 047537-01 and (ii) UO1 NS 047537-06A1). For this work, MoBa 1 and 2 were supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES-49019) and the Norwegian Research Council/BIOBANK (Grant no. 221097). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, Project no. 262700.D.A.L. has received support from national and international government and charity funders, as well as from Roche Diagnostics and Medtronic for research unrelated to this study. The other authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A
    corecore