430 research outputs found
Molecular causality in the advent of foundation models
Correlation is not causation. As simple as this widely agreed-upon statement
may seem, scientifically defining causality and using it to drive our modern
biomedical research is immensely challenging. In this perspective, we attempt
to synergise the partly disparate fields of systems biology, causal reasoning,
and machine learning, to inform future approaches in the field of systems
biology and molecular networks.Comment: 22 pages, 0 figures, 87 references; submitted to MS
Parallel ant colony optimization for the training of cell signaling networks
[Abstract]: Acquiring a functional comprehension of the deregulation of cell signaling networks in disease allows progress in the development of new therapies and drugs. Computational models are becoming increasingly popular as a systematic tool to analyze the functioning of complex biochemical networks, such as those involved in cell signaling. CellNOpt is a framework to build predictive logic-based models of signaling pathways by training a prior knowledge network to biochemical data obtained from perturbation experiments. This training can be formulated as an optimization problem that can be solved using metaheuristics. However, the genetic algorithm used so far in CellNOpt presents limitations in terms of execution time and quality of solutions when applied to large instances. Thus, in order to overcome those issues, in this paper we propose the use of a method based on ant colony optimization, adapted to the problem at hand and parallelized using a hybrid approach. The performance of this novel method is illustrated with several challenging benchmark problems in the study of new therapies for liver cancer
A single-cell model of PIP3 dynamics using chemical dimerization
AbstractMost cellular processes are driven by simple biochemical mechanisms such as protein and lipid phosphorylation, but the sum of all these conversions is exceedingly complex. Hence, intuition alone is not enough to discern the underlying mechanisms in the light of experimental data. Toward this end, mathematical models provide a conceptual and numerical framework to formally evaluate the plausibility of biochemical processes. To illustrate the use of these models, here we built a mechanistic computational model of PI3K (phosphatidylinositol 3-kinase) activity, to determine the kinetics of lipid metabolizing enzymes in single cells. The model is trained to data generated upon perturbation with a reversible small-molecule based chemical dimerization system that allows for the very rapid manipulation of the PIP3 (phosphatidylinositol 3,4,5-trisphosphate) signaling pathway, and monitored with live-cell microscopy. We find that the rapid relaxation system used in this work decreased the uncertainty of estimating kinetic parameters compared to methods based on in vitro assays. We also examined the use of Bayesian parameter inference and how the use of such a probabilistic method gives information on the kinetics of PI3K and PTEN activity
A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology
[Abstract]
Background:
We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs).
Methods:
We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems.
Results:
We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores).
Conclusions:
These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.Ministerio de EconomÃa y Competitividad; DPI2014-55276-C5-2-RMinisterio de EconomÃa y Competitividad; TIN2016-75845-PGalicia. ConsellerÃa de Cultura, Educación e Ordenación Universitaria; R2016/045Galicia. ConsellerÃa de Cultura, Educación e Ordenación Universitaria; GRC2013/05
Prediction of human population responses to toxic compounds by a collaborative competition
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000-Genomes Project. The challenge participants developed algorithms to predict inter-individual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against a blinded experimental dataset. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson’s r<0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r<0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal
Logic-Based Models for the Analysis of Cell Signaling Networks
Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks.National Institutes of Health (U.S.) (Grant P50- GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies
Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimisation approach
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters.Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells.D.H., J.R.B. and J.S.R. acknowledge funding from the EU FP7 projects 'NICHE' (ITN Grant number 289384) and 'BioPreDyn' (KBBE grant number 289434). J.R.B. also acknowledges funding from the Spanish Ministerio de Economia y Competitividad (and the FEDER) through the project MultiScales (DPI2011-28112-C04-03)
Complementing cell taxonomies with a multicellular functional analysis of tissues
The application of single-cell molecular profiling coupled with spatial
technologies has enabled charting cellular heterogeneity in reference tissues
and in disease. This new wave of molecular data has highlighted the expected
diversity of single-cell dynamics upon shared external queues and spatial
organizations. However, little is known about the relationship between single
cell heterogeneity and the emergence and maintenance of robust multicellular
processes in developed tissues and its role in (patho)physiology. Here, we
present emerging computational modeling strategies that use increasingly
available large-scale cross-condition single cell and spatial datasets, to
study multicellular organization in tissues and complement cell taxonomies.
This perspective should enable us to better understand how cells within tissues
collectively process information and adapt synchronized responses in disease
contexts and to bridge the gap between structural changes and functions in
tissues.Comment: 36 pages, 4 figure
- …