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Abstract

The ability to computationally predict the effects of toxic compounds on humans could help 

address the deficiencies of current chemical safety testing. Here, we report the results from a 

community-based DREAM challenge to predict toxicities of environmental compounds with 

potential adverse health effects for human populations. We measured the cytotoxicity of 156 

compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are 

available as part of the Tox21 1000-Genomes Project. The challenge participants developed 

algorithms to predict inter-individual variability of toxic response from genomic profiles and 

population-level cytotoxicity data from structural attributes of the compounds. 179 submitted 

predictions were evaluated against a blinded experimental dataset. Individual cytotoxicity 

predictions were better than random, with modest correlations (Pearson’s r<0.28), consistent with 

complex trait genomic prediction. In contrast, predictions of population-level response to different 

compounds were higher (r<0.66). The results highlight the possibility of predicting health risks 

associated with unknown compounds, although risk estimation accuracy remains suboptimal.

The ability to predict toxic response in a population could help establish safe levels of 

exposure to new compounds and identify individuals at increased risk for adverse health 

outcomes. Current risk assessment does not account for individual differences in chemical 

exposure response. Furthermore, standard safety testing is performed on a small fraction of 

existing environmental compounds1 and uses animal models that are costly2, time-

consuming, and do not always reflect human safety profiles. Algorithms that provide 

accurate in silico predictions of safety risks in humans could provide an accurate and cost-

effective tool to identify potential health risks to specific populations. However, previous 

prediction algorithms have been limited by lack of data about population variability and 

difficulties in extrapolating from model organisms3,4.

The development of high-throughput in vitro toxicity studies using human-derived cell 

models5 and rapidly decreasing sequencing costs have enabled large, genetically distinct 

populations to be characterized. High-throughput in vitro systems have been successfully 

used to assess changes in transcriptional6,7 and phenotypic8 traits in response to compound 

exposure. Furthermore, genomically characterized cell lines that decrease non-genetic 

sources of variation9,10 have been used to identify genetic variants and transcripts associated 
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with both in vitro and clinical responses to drug exposures11,12. These technologies enable 

systematic toxicity screening of a wide range of compounds in human cell lines to assess 

population-level responses and to examine variation in risk profiles across individuals13.

This work formed part of an open community challenge within the Dialogue for Reverse 

Engineering Assessment and Methods (DREAM) framework14,15. Participating researchers 

were asked to predict inter-individual variability in cytotoxic response based on genomic 

and transcriptional profiles (subchallenge 1) and to predict population-level parameters of 

cytotoxicity across chemicals based on structural attributes of compounds (subchallenge 2). 

Cellular toxicity was assessed for 156 compounds across lymphoblastoid cell lines derived 

from 884 individuals5 from nine distinct geographical subpopulations across Europe, Africa, 

Asia, and the Americas (Fig. 1)16. Genetic17 and transcriptional data18 from these cell lines 

were available as part of the 1000 Genomes Project. The dataset has twice the number of 

cell lines and three times the number of compounds compared with the previous largest 

study19. We evaluated the submitted state-of-the-art modeling approaches to benchmark 

current best practices in predictive modeling. Furthermore, the challenge identified 

algorithms that were able to predict, with better than random accuracy, individual and 

population-level response to different compounds using only on genomic data. Although 

these results represent an improvement over previous attempts to predict cytotoxicity 

response, substantial improvements in prediction accuracy remain critical.

Results

Challenge Participation

213 people from more than 30 countries registered to participate in the NIEHS-NCATS-

UNC DREAM Toxicogenetics challenge. Participants were provided with a subset of the 

data to train models over a three-month period, and models were evaluated on a second 

subset of test data to which the participants were blinded (Fig. 1). The training data included 

(i) a measure of cytotoxic susceptibility per cell line (EC10, the dose for which a 10% 

decrease in viability occurred) for 106 compounds tested across 487 cell lines; (ii) genotypes 

for all 884 cell lines; (iii) RNAseq-based quantification of gene transcripts for 337 cell lines, 

and (iv) structural attributes of all 156 compounds (see online methods for more detailed 

description). 34 research teams submitted a total of 99 predictions of inter-individual 

variation in response to subchallenge 1, and 23 research teams submitted a total of 80 

predictions of population-level toxicity parameters in response to subchallenge 2. The 

challenge offered the unique opportunity to compare performance across a wide variety of 

state-of-the-art methods (listed in Supplementary Table 1) for the prediction of cytotoxic 

response to environmental compounds.

Subchallenge 1: Prediction of inter-individual variation

Models were evaluated based on their ability to predict EC10 values in a blind test set 

comprised of EC10 values measured in 264 cell lines that were not included in the training 

set. Prediction accuracy was scored using two metrics: Pearson Correlation (r), which 

evaluates the linear dependence between predicted and measured EC10 values, and a rank-

based metric, the Probabilistic C-index (pCi)15, which takes into account the probabilistic 
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nature of the gold standard due to technical sources of noise in the associated measures by 

evaluating the concordance of cell line cytotoxicity ranks. Scoring analyses were limited to 

91 compounds, excluding 15 compounds for which no effect on cytotoxicity was observed 

across all the population, in order to avoid the introduction of noise in the ranking (see 

Online Methods and Supplementary Fig. 1). For each metric, overall team ranks were 

calculated by ranking teams separately for each compound and then averaging across 

compounds (see Online Methods for a more detailed description of the scoring algorithm).

We first assessed whether predictions were significantly better than random by comparing 

the average r (Fig. 2a) and the average pCi (Fig. 2b), computed across compounds for each 

submission with the corresponding null model of randomly empirically generated EC10 

values. Out of the 99 submissions, the null hypothesis of randomly generated predictions 

could be rejected (False Discovery Rate (FDR)<0.05, which automatically corrects for 

multiple hypotheses) for 46 submissions using r, 47 submissions using pCi, and for 42 

submissions using both metrics. The average values over all compounds for r and pCi were 

quite modest (maximum value 0.07 and 0.51 respectively) suggesting that cytotoxic 

response to chemical exposure is not, in general, well predicted based on SNP data. 

Although average predictive ability was low, performance was not uniform across 

compounds. Variability in predictive performance across compounds ranged from −0.21 to 

0.28 for r values and from 0.45 to 0.56 for pCi (Fig. 3a and Supplementary Fig. 2). We 

tested whether cytotoxicity of each compound could be predicted better than chance. For 

each compound, predicted EC10 values for all teams were compared with the null random 

model. This analysis verified that predictions are significantly better than random for most 

of the compounds (55 out of the 91 compounds; Wilcoxon rank sum test, p-value<0.05, and 

Online Methods), even if performances for some compounds are very poor. The ranking of 

best-performing teams was shown to be robust with respect to the compounds used for 

scoring (see Supplementary Fig. 3 and Online Methods).

Prediction algorithms were also evaluated for their ability to categorically classify responses 

as cytotoxic or non-toxic using an EC10 threshold of 1.25 (as defined based on the 

classification of response curves described in Online Methods). 91 of 99 submissions 

achieved average AUC-ROC (Area Under the Curve of a Receiver Operating Characteristic) 

above 0.9 (Online Methods), indicating that binary classification is much easier to predict 

than exact EC10 values.

We next assessed the contribution to prediction quality of RNA sequencing (RNA-seq) data, 

which was only available for a subset of cell lines. Overall, predictions were significantly 

better in the 97 cell lines with available RNA-seq data (Fig. 4, paired t-test, p-value<10−16 

for both r and pCi), which corresponds to a high effect size (Cohen’s d equal to 1.6, derived 

from t-statistics). These results are consistent with a recent report that gene expression is 

more predictive of drug-induced cytotoxicity than genetic variation in cancer cell lines15.

Best performing method for subchallenge 1—The best-performing method for 

prediction of inter-individual variation in cytotoxic response was able to predict with 

maximum r = 0.23 (average r=0.05) and maximum pCi = 0.55 (average pCi = 0.51). As with 

the scoring analyses, this approach also omitted the 15 compounds that failed to induce 
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cytotoxic response from the analysis. Fig. 5a shows the workflow of the prediction 

procedure for this method, which included steps for dimension reduction, prediction, and 

cross validation. A set of 0.15M SNPs was selected for inclusion in this analysis using two 

approaches: (1) non-synonymous SNPs within any gene as well as SNPs close to any gene 

defined by 2kb upstream and 500bp downstream regions; (2) remaining SNPs if located 

within or close to gene members of the 41 KEGG20 gene sets (Supplementary Table 2) 

documented in the MSigDB database21 to represent cell cycle, cell death, or cancer biology, 

or if they demonstrated correlation (p-value<0.05) with the expression of at least one local 

gene based on the RNA-Seq data (eQTL analysis). Information contained within this SNP 

set was then compiled into 10 ‘genetic clusters’ using k-means clustering based on the first 

three Principal Components obtained by Multidimensional Scaling (MDS) analysis22. The 

resultant ‘genetic cluster’ variable was highly representative of known geographic 

subpopulations (Fig. 5b), but also contained additional information not directly represented 

by each subpopulation. This variable was used to build a model of cytotoxicity for each 

compound using the Random Forest algorithm in conjunction with sex, geographic area, and 

experimental batch. Cross validation was carried out to choose parameters for clustering and 

to select methods for filtering SNPs. In the final scoring phase, this prediction approach 

achieved the best performance among dozens of submitted models, judged by the 

experimentally obtained true response data. Details of this modeling approach are discussed 

further in Online Methods and supplementary materials.

Subchallenge 2: Prediction of population-level parameters

Predictions of population-level parameters were scored using both Pearson Correlation (r) 

and Spearman Correlation (rs), with an approach similar to the previous subchallenge 

(Online Methods). For both statistics, the global performance of each submission was 

assessed by averaging correlations computed separately for median EC10 values, 

representing a “typical” cytotoxicity response, and the difference between the 95th and 5th 

percentiles (interquantile range) for EC10 values, representing a measure of population 

dispersion.

The comparison with the null model of random predictions (Fig. 2c,d) was performed to 

assess the statistical significance of compound predictions. Of the 80 submitted predictions, 

the null hypothesis of randomly generated predictions was rejected (FDR<0.05) for 13 

predictions using average r and for 17 using average rs. For 13 predictions, the null 

hypothesis was rejected considering both metrics. A similar outcome was observed when 

using Fisher’s method to assess the significance of individual submissions (Online 

Methods). Again, the ranking of best performing teams was shown to be robust with respect 

to the compounds used for scoring (see Supplementary Fig. 4 and Online Methods).

The average cytotoxicity (median EC10) of compounds appeared to be easier to predict (r 

ranged from −0.31 to 0.66; rs ranged from −0.29 to 0.72) than the variability in the response 

(interquantile range) of the population (r ranged from −0.22 to 0.37; rs ranged from −0.14 to 

0.48; see Supplementary Fig. 5).
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Best performing method for subchallenge 2—The overall evaluation criterion for 

subchallenge 2 combined the prediction of median and interquantile range. The best 

performing method was able to predict the median and interquantile distance with r (and rs) 

equal to 0.52 (0.45) and 0.37 (0.40). The workflow used by this method, shown in Fig. 5c, 

consisted of four major steps: feature selection, group identification, model development, 

and test compound prediction. Features were selected from structural attributes of chemicals 

(Step 1) derived in three ways and compared: CDK23 and SiRMS24 descriptors (both 

provided by the Challenge organizers) and Dragon descriptors25. Chemical descriptors were 

normalized separately and those descriptors that correlated with toxicity were used for 

training the models. The models using the Dragon descriptors achieved the best performance 

in both cross validation and final scoring. In Step 2, compounds were categorized into 4 

groups based on hierarchical clustering of their EC10 profiles across 487 cell lines. Random 

Forest models of cytotoxicity built separately for each compound group (Fig. 5c,d) were 

used to select features specific to prediction in that group, using all compounds to train the 

model. These models were used for predicting new compounds (Fig. 5c,e) as follows: For 

each new compound, toxicity was estimated using a weighted average of predictions from 

all four group-specific models, where weights were determined by similarity to each of the 

compound clusters. The similarity measure considered the distance to the cluster in the 

group-specific descriptor space, as well as the probability of being in the cluster using an 

additional classification model. The above modeling approaches were applied to predict 

both the median EC10 values and the interquantile range. For median EC10, cell-line specific 

predictions were generated using separate models and then averaged. For interquartile 

distance, a set of models was built to directly fit the measured interquantile distance for each 

compound. Further details of this modeling approach are discussed in Online Methods and 

supplementary materials. While this method was the best overall performer, other methods 

such as KSPA (see team Austria, on line supplementary material), provided more accurate 

prediction of the median cytotoxicity with r and rs equal to 0.65 and 0.72 respectively.

Predictability of compounds

Compounds were clearly separated into three clusters based on the accuracy of cytotoxicity 

predictions (Fig. 3a): a cluster of compounds for which predictions were high across all 

models (14 compounds), a cluster of compounds for which predictions were low across all 

models (17 compounds), and a cluster of compounds for which predictions varied across 

models. This separation was consistent between the two metrics used to evaluate 

performances (see Online Methods and Supplementary Fig. 2). We next tested for features 

that could distinguish between compounds in the high vs. low predictability clusters. Several 

chemical descriptors distinguished between high vs. low predictability compounds and are 

listed in Supplementary Table 3. Notably, the Lipinski rule26 (i.e., a rule of thumb to 

evaluate drug similarity) was among these distinguishing features. As expected, compounds 

in the highly predictive cluster had lower pooled variance (thus are less noisy) than those in 

the poorly predicted cluster (one tailed t-test, pval=0.027). Contrary to expectation, 

compounds in the high vs. low predictability clusters did not differ with regard to the 

distribution of cytotoxic response across the population in terms of median and interquantile 

range (Wilcoxon rank sum test, p-values 0.65 and 0.68 respectively) nor to estimated 

heritability of compound cytotoxicities (p-value=0.33), see also Supplementary Fig. 6. 
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However, we observed that, when performing a principal component analysis (PCA) on the 

cytotoxicity data (distributions centered to zero and scaled to unit variance for each 

compound), we could distinguish between the compounds with high and low predictability 

(Supplementary Fig. 7), indicating that the predictability was at least partially due to the 

cytotoxic profile of the compounds across the population.

Additionally, there was a clear difference in the shape of the distributions of the cytotoxic 

response across these two compound classes (Supplementary Fig. 8). In particular, highly 

predictable compounds tended to be characterized more frequently by a multimodal 

distribution (35% of highly predictable compounds, 0% of poorly predictable compounds, 

Hartigans’s dip test for unimodality p-value<0.05, see Online Methods). The enrichment of 

multimodal distributions in highly predictable compounds suggests that algorithms are able 

to distinguish well when there are groups of individuals showing a different response to the 

same compound, rather than when the response follows a unimodal distribution. The PCA 

analysis allowed us also to estimate the predictive power that can be expected for new 

compounds: a linear support vector machine (SVM) showed an accuracy of 66% (leave-one-

out bootstrapping 5000 times).

Wisdom of crowds

Previous DREAM challenges15,27,28 have observed that aggregation of predictions, which 

leverage the collective insight of all participants, can provide a more robust estimate than 

any individual prediction. We verified that, when applied to the test sets used for the 

challenge, the averaged aggregation across predictions within this study performed on par 

with top individual predictions for both subchallenge 1 (Supplementary Fig. 9a) and 

subchallenge 2 (Supplementary Fig. 9f). It is interesting to note that adding poor methods to 

an ensemble degrades the aggregate performance to a lesser degree than the gain resulting 

from adding good methods. For example, in subchallenge 1, the inclusion of the worst five 

individual predictions (whose correlations spanned from a range of 0.015 from 0 to −0.015) 

cause only a 5.55 % decrease of performances based on Pearson Correlation, while the 

inclusion of top five individual predictions (whose correlations also spanned a range of 

0.015, but from 0.03 to 0.045) causes a 21.17 % increase (Supplementary Fig. 9d,e). The 

same trends have been observed in other analyses of ensemble methods27.

To robustly test whether aggregate model performance was consistently better at prediction 

relative to individual predictions, we next performed 200 iterations of an analysis in which 

optimized aggregate models were built using half of the test data and evaluated for 

performance using the remaining test data. Optimized aggregate models performed 

significantly better than the best individual prediction (paired t-test with p-values < 2.2×1016 

for subchallenge 1 and 0.027 for subchallenge 2; Supplementary Fig. 9b,g). The optimal 

aggregate prediction outperformed the top individual prediction for all runs in subchallenge 

1 and for 88.5% of the runs in subchallenge 2. While optimized aggregate models built from 

the most accurate individual predictions have the best performance, in practice it is not 

possible to obtain an objective performance estimate for each model prior to analysis. For 

this reason, we also built an unsupervised aggregate model by combining a random selection 

of individual predictions. As a general trend, unsupervised aggregate models exhibited 
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improved performance with respect to randomly selected individual predictions (Fig. 2e,f). 

Hence, as a general rule, it is favorable to aggregate efforts generated using different 

approaches even when the performance of the individual algorithms is unknown. Indeed, for 

both subchallenge 1 and 2, the aggregation of all predictions outperform 87% of individual 

team predictions.

Characteristics of modeling approaches

We assessed modeling methodologies used within the Challenge by surveying participants 

regarding their selection of input data, pre-processing methodologies for data reduction, 

prediction algorithms, and techniques for model validation (see Online Methods and Fig. 6). 

All predictions used at least one of the data sources provided by the organizers. Notably, 

some models performed well using only the sex/ancestry covariates in the absence of 

genomic data (subchallenge 1, Team ranked 4th). Most of the teams, including the best 

performing teams, also integrated information from external sources into their models (24% 

for subchallenge 1 and 47% for subchallenge 2). A variety of methodological algorithms 

representing the state-of-the-art in the modeling field were applied in both subchallenges. 

No methodologies for data reduction, predictive modeling, or model validation used in this 

challenge outperformed the others in any obvious manner (Supplementary Fig. 10), 

suggesting that performance was dependent mainly on strategy for methodological 

application rather than on algorithmic choice.

Discussion

The results of the NIEHS-NCATS-UNC-DREAM Toxicogenetics Challenge demonstrate 

that modeling algorithms were able to predict cytotoxicity traits based on genetic profiles 

with higher than random accuracy, although results were modest. The methods developed 

for Subchallenge 1 are likely to be even more useful in future settings, as decreasing 

sequencing costs means that larger training sets will be available to achieve higher 

predictive accuracy.

Accurate predictions of population-level cytotoxicity could help to establish safe 

environmental exposure limits. Therefore, we tested whether population-level cytotoxicity 

could be predicted based on the structural attributes of compounds (Subchallenge 2). 

Participants were able to robustly predict both mean toxicity and population variability in 

cytotoxicity based entirely on chemical attributes of compounds. These results demonstrate 

that predictive algorithms may be able to provide real-world benefit in environmental risk 

assessment and suggest an opportunity to incorporate structural predictions into hazard 

assessments of new compounds.

The ability to predict inter-individual variability in cytotoxic response (Subchallenge 1) is 

consistent with predictive performances for complex genetic traits such as height29. 

Comparable predictive performances were also observed in a recent analysis comparing 

algorithms that predicted cellular response to cancer agents15. Because each individual SNP 

describes only a small portion of overall variation in response, the ability to accurately 

predict phenotype, or even to detect true genetic signal in large-scale genomic analysis, 
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requires very large sample sizes30,31. Down-sampling analyses suggest that predictability 

would increase with additional samples (Supplementary Fig. 11).

The complex nature of the EC10 cytotoxic phenotype, which is a statistic that can be 

influenced by often high levels of technical variation9, may also decrease prediction power. 

Indeed, we observed that algorithms were able to broadly classify compounds as cytotoxic 

or non-cytotoxic more accurately than they could predict cytotoxicity. We also observed that 

cytotoxic predictability varied across compounds although we could not identify a clear 

pattern as to which characteristics improve predictability.

Regardless of these limitations, prediction rules identified within best performing 

algorithms, can be leveraged to advance future efforts within this field regarding data 

collection and prediction analysis. In particular, the best-performing team in subchallenge 1 

developed a novel data processing approach that incorporated biological prior knowledge 

into their machine-learning methodology by clustering individual cell lines based on variants 

located in a set of presumed biologically relevant loci. The resultant clusters were broadly 

representative of geographically distinct subpopulations but included additional information. 

This approach may be generally useful in predicting complex traits based on genetic variant 

data. The prediction approaches developed for subchallenge 2 could be generalized to 

predict and rationalize chemical compounds’ biological properties from chemical structures. 

The proposed model incorporated the population-level structures in toxicity profiles into 

traditional quantitative structure-activity relationship models.

A unique aspect of this study is that it focuses on the use of constitutional genetic variation 

to predict toxicity response. While some studies support that transcriptomic profiles can 

provide higher predictive performance than genetic profiles – and, indeed, we observed 

improved predictive performance with the availability of baseline transcriptional data – the 

use of transcriptional data has often been upon perturbation, which is not applicable within 

our framework of environmental risk assessment. As such, the use of genetic profiles to 

predict variation in response – across individuals and across compounds – on the population 

level provides a tool that can be applied within real-world applications.

Overall, our analyses assessed the capability of computational approaches to provide 

meaningful predictions of cytotoxic response to environmental compound exposure using 

genetic and chemical structure information. The models developed within this project would 

require higher accuracy in order to provide actionable information at the level of an 

individual. However, for prioritization of compounds, this study provides statistically 

significant evidence for the ability to predict toxic effects on populations using a stringent 

evaluation methodology.

Online Methods

Data Description

A schematic of the challenge is outlined in Figure 1. The cytotoxicity data used in the 

challenge consists of the estimated effective concentrations that induced a 10% decrease in 

viability (i.e., the EC10) generated for 884 lymphoblastoid cell line in response to 156 
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common environmental compounds. Participants were provided with a training set of 

cytotoxicity data for 620 cell lines and 106 compounds along with genotype data for all cell 

lines, RNA-seq data for 337 cell lines, and chemical attributes for all compounds. Primary 

data generation and other details on the cytotoxicity screening are detailed in Abdo et al.5 

available in open access at: http://ehp.niehs.nih.gov/1408775/. A brief description of the data 

is provided below. A total of four toxicity phenotyping, genomic, genotyping, and chemical 

attribute data sets were available for this challenge. Descriptions of each data set can be 

found in the annotation files associated with each data set supplied through the DREAM 

website (https://www.synapse.org/#!Synapse:syn1761567/wiki/56224).

(1) Chemicals—Chemicals were a subset of the National Toxicology Program’s 1408 

chemical library as detailed in Xia et al.32 and were selected to broadly represent chemicals 

found in the environment and consumer products. A small number of pharmaceuticals was 

included as well, but the focus of this experiment was on environmental toxicants. 

Chemicals were dissolved in dimethyl sulfoxide (DMSO) to prepare 20 mM stock 

concentrations, and then diluted in DMSO to provide final concentrations ranging from 0.33 

nM to 92 μM. We fit all chemicals and concentrations, including duplicate samples for 8 

chemicals, and positive and negative controls for each cell line to a single 1536-well plate.

(2) Cell lines—We acquired the immortalized lymphoblastoid cell lines from Coriell. We 

aimed to represent human genetic diversity and thus selected cell lines from 9 populations 

across the globe from Europe, the Americas, Asia, and Africa. These included the Han 

Chinese in Beijing, China (CHB); Japanese in Tokyo, Japan (JPT); Luhya in Webuye, 

Kenya (LWK); Yoruban in Ibadan, Nigeria (YRI); Utah residents with European ancestry 

(CEU); British from England and Scotland (GBR); Tuscans in Italy (TSI); Mexican ancestry 

in Los Angeles, California (MXL); and Colombians in Medellin, Colombia (CLM). Cell 

lines were selected to reflect unrelated individuals by removing all instances of first-degree 

relatives. Within each population, cell lines were included from both males and females. 

Cell lines were randomly divided into 5 screening batches with equal distribution of 

populations and gender. Approximately 65% of the cell lines were seeded for repeat analysis 

on multiple plates (2–3 plates per batch and/or between batches).

(3) Cytotoxicity profiling—Screening was performed in 1536-well plate format. The 

negative control was DMSO at 0.46% vol/vol; the positive control was tetra-octyl-

ammonium bromide (46 μM). We used the CellTiter-Glo Luminescent Cell Viability assay 

(Promega) to assess intracellular ATP concentration, a marker for viability/cytotoxicity, at 

40 h post treatment. We used a ViewLux plate reader (PerkinElmer) to detect luminescent 

intensity. Cytotoxicity data were divided into two parts for training and external validation 

of the models. The former contained individual EC10 values in a 487 cell line × 106 

compound matrix. The latter contained population-level summary statistics of EC10 values 

per compound in a 106 compound × 3 statistics matrix. EC10 values were calculated from 

concentration-response exposure data for each chemical across all 884 cell lines and were 

normalized relative to the positive/negative controls. The EC10 value is defined as the 

concentration at which intracelluar ATP content was decreased by 10% and was estimated 

for each cell line by normalizing data to vehicle treated cells and then fitting normalized 
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concentration-response curves to a three parameter logistic regression model where 

maximum response was fixed to −100% and minimum response was derived from the 

response of the lowest three concentrations, with the exclusion of outliers as defined by >2 

standard deviations. If the compound had less than 10% effect over the range of 

concentrations used in the experiment, the EC10 was set to 100 μM to represent a “no 

observable adverse effect level”. EC10 values were batch corrected using Combat33 and then 

replicate values per individual were averaged. Batch information is provided in the covariate 

file, although data has already been corrected for this technical source of variation. Data 

providers verified that EC10 and EC50 values are reasonably correlated. However only 

EC10 values were used for the challenge, as this is the most interesting measure for low-

dose toxic response and highest relevance for susceptible subpopulations.

(4) Genotype Data—Approximately 1.3 million single nucleotide polymorphisms (SNPs) 

are provided for each individual. For 761 cell lines, these SNPs were directly genotyped 

using the Illumina HumanOmni2.5 platform. For the remaining 123 unrelated individuals, 

the available sequencing data were used to impute the missing SNPs, using either HapMap3 

genotypes for these individuals, or sequence data, using MACH software and the reference 

set for imputation. SNPs with a call rate below 95%, MAF<0.01, strong evidence against 

Hardy-Weinberg disequilibrium (p<10−6) were excluded from this dataset, leaving a final 

set of 1,327,016 SNPs.

(5) RNA sequencing—RNA sequencing data was available for 337 of the cell lines 

(representing the CEU, GBR, TSI, and YRI subpopulations) as dataset E-GEUV-1 in the 

ArrayExpress repository. The mapped reads files (BAM format) were downloaded and 

IsoDOT was used to count the reads of each non-overlapping exon, which has been 

preprocessed in IsoDOT library files. Read counts for each gene were generated by 

summing the read counts for all of that gene’s exons. Data are provided as raw gene counts 

for 46256 transcripts. (6) Chemical attributes. Each compound is described by quantitative 

structural attributes as developed using two standard methodologies for the purpose of 

providing a standardized description of structural properties that are common across 

chemicals and can be used to model structure-based commonalities in cytotoxicity. 

Attributes include 160 chemical descriptors calculated using the Chemistry Development 

Kit (CDK)23. In addition, 9272 chemical descriptors were generated for each compound 

using the Simplex representation of molecular structure (SIRMS)24. In this process, each 

molecule is represented as a system of tetratomic fragments with fixed composition, 

structure, chirality, and symmetry as described here. Data were not further processed or 

normalized.

Web-based resource and challenge rules

The challenge was hosted on Synapse34, a cloud-based platform for collaborative scientific 

data analysis. Synapse was used to distribute challenge data and to track participant 

agreement to the appropriate data usage conditions (main challenge web page https://

www.synapse.org/#!Synapse:syn1761567). Synapse was used also to run a real-time 

leaderboard during the first phase of the challenge, where participant could submit their 

prediction on a test set (133 cell lines) that was then released as part of the training set for 
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the final phase of the challenge, and receive real time feedback on their performances 

(Supplementary Fig. 12).

For the final submissions, challenge participants created Synapse projects (https://

www.synapse.org/#!Synapse:syn1840307/wiki/67255) containing their predictions 

(maximum 5 predictions per team) together with the code used to derive them and wikis in 

which participants describe their methods in prose and figures. To assure reproducibility of 

the challenge, the organizers of submissions ran the code of the best performing methods. 

All data are stored in synapse and are available in Synapse (https://www.synapse.org/#!

Synapse:syn1761567/wiki/56224). Supplementary information is also available in Synapse 

as an interactive resource https://www.synapse.org/#!Synapse:syn1840307.

Software and statistical methods

R (v3.1) was used for scoring and for post-challenge analysis and False Discovery Rate 

(FDR) was computed using the Benjamini–Hochberg procedure. R (v2.15) and plink (v1.07) 

were used by the best performing team of subchallenge 1. R (v2.15) and Dragon (v5.5) were 

used by the best performing team of subchallenge 2. All relevant code has been provided as 

Supplementary Code and can also be found online (https://www.synapse.org/#!

Synapse:syn1840307/wiki/231104). The file includes: a) scoring functions, b) code used to 

generate supplementary figures, c) code submitted by participants and used to generate 

predictions.

Selection of training and test set

For both subchallenges, the dataset was divided in training and test set using stratified 

random sampling to guarantee that extreme responses were included in both training and test 

data. More in details, for subchallenge 1, the dataset was clustered in N groups based on 

EC10 profiles, where N is the number of individuals in the test set. One individual is then 

selected from each group to be part of the test set. This guarantees that strong and weak 

responses were present in both the training and the test sets, which is also more 

representative of the task of predictive genomics. The same approach was used for 

subchallenge 2, but with clustering by compounds instead of by individuals.

Scoring algorithm for subchallenge 1

For each metric (i.e., Pearson Correlation and prob C-index), teams were ranked separately 

for each compound and then the average rank was computed, for each team, across 

compounds, providing a final rank for each metric. Teams were finally ranked (final rank) 

based on the average of the rank computed for each metric (mean ranking). Only 91 out of 

106 compounds were used for final scoring as 15 compounds were shown to have no 

toxicity across the human cell population (see Supplementary Fig. 1A). Since the aim of the 

challenge is the prediction of how individual cell lines differently respond to each 

compound, compounds for which the response is the same across all the population are not 

interesting in this context, and were therefore excluded from the evaluation to avoid 

including noise in the scoring metric.
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Significance and robustness of subchallenge 1

Significance of prediction for individual compounds—By comparing the 

distribution of submissions with respect to the null model of randomly predicted EC10 

values, we verified that predictions are significantly better then random for 55 of 91 

compounds (Wilcoxon sum rank test, p-value<0.05) if we consider r and pCi separately, and 

for 59 of 91 compounds if we consider compounds for which the hypothesis of equal 

distribution is rejected for at least one metric. To assess whether lack of predictability was 

universal across submissions, we repeated this analysis within the subset of 25 submissions 

with the best prediction for each compound. In this case, the alternative hypothesis is 

accepted for all 91 compounds for both r and pCi.

Significance of predictions based on ranking—The mean ranking across 

compounds was compared with the empirical null distribution of 100,000 randomized mean 

rankings, derived by randomly ranking teams for each compound and then computing the 

randomized mean ranking (Supplementary Table 4). Of the 99 predictions, the null model 

could be rejected (t-test, FDR<0.05) for 17 predictions, considering the mean ranking 

computed based on Pearson Correlation, and for 17 predictions, when considering pCi. For 

15 predictions, the null model was rejected considering both metrics.

Robustness analysis—To assess the robustness of the final team rank with respect to the 

compounds used for scoring, we recomputed the score multiple times by randomly masking 

each time, data for 10% of the compounds. In (Supplementary Fig. 3, we compared the 

distribution of the mean ranking and of the final rank obtained by all teams and verified that 

the best submission is reliably ranked first as it is significantly on top with respect to all the 

other submissions (one-sided Wilcoxon signed-rank test, FDR<10−10). The robustness 

analysis also shows that all of the top 6 submissions are statistically different.

Classification problem

Considering the inherent variances in the measured EC10 values, the model performances 

were reevaluated for their significance in predicting the activity outcome of a compound in a 

cell line (i.e., cytotoxic or non-toxic), instead of the exact EC10 value. As shown in 

Supplementary Fig. 13a, most of the compounds in the test set were either active/cytotoxic 

(43%) in all of the cell lines or inactive/non-toxic (16%) across all of the cell lines, whereas 

each cell line showed a well-balanced number of active/inactive calls. To evaluate overall 

model performance at classifying active and inactive compounds, for each model 

submission, AUC-ROC values were calculated first for each cell line then averaged across 

all cell lines (Supplementary Fig. 13b, red line). With a few exceptions, most model 

submissions (91 out of 99) performed well with average AUC-ROC values >0.9. To further 

assess model performance, model sensitivity (recall) was calculated for compounds that 

were active across all cell lines to test the model’s capacity at correctly making active calls, 

and specificity was calculated for compounds that were inactive across all cell lines to test 

the model’s capacity at correctly making inactive calls. For this analysis, the active EC10 

cutoff was determined by comparing the experimental EC10 values of all test set compounds 

to their cytotoxic/non-toxic classifications. An EC10 of 1.25 μM was chosen as the optimal 

cutoff for classifying a compound as active in a cell line. The average sensitivity and 
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specificity measures calculated for all model submissions are shown in Supplementary Fig. 

13b. Most model submissions achieved good sensitivity (Supplementary Fig. 13b; green 

line) in predicting active compounds and good specificity (Supplementary Fig. 13b; purple 

line) in predicting inactive compounds with 84 out of the 99 submissions achieving >90% 

average sensitivity and 91 submissions achieving >90% average specificity.

Evaluation of Model Performance—Compounds were assigned one of the four 

categories, true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN), based on their activity observed in the assay and model predicted activity according to 

the following table.

Predicted\Experimental Cytotoxic Non-toxic

EC10≤active cutoff TP FP

EC10>active cutoff FN TN

The numbers of TP, FP, TN, and FN calls were counted at various EC10 cutoffs and the 

AUC-ROC was calculated for each compound in each cell line. The ROC curve is a plot of 

sensitivity against 1-specificity, where sensitivity is defined as TP/(TP+FN) and specificity 

defined as TN/(FP+TN). A perfect model would have an AUC-ROC of 1 and an AUC-ROC 

of 0.5 or lower indicates that the model predictions are not better than random.

Best performing method for subchallenge 1

We evaluated the effect of removing any one of the four predictors used in the random 

Forest algorithm on the prediction. Supplementary Fig. 14 shows that removing any of the 

four predictors leads to a worse prediction accuracy measured by Pearson Correlation. We 

also investigated whether the filtering step with KEGG pathway and RNA-Seq data gives 

any improvement in prediction accuracy by randomly sampling 0.15 million SNPs from the 

0.61 million SNPs selected from the first step of feature selection or directly using the 0.61 

million SNPs to generate principal components. Indeed, Supplementary Fig. 14 shows that 

both methods lead to a mean Pearson Correlation that is even smaller than a prediction 

model that does not include the “genetic cluster” variable. In conclusion, our results suggest 

that the four variables (sex, population, experimental batch, and “genetic cluster”) all 

contribute to the prediction accuracy and that the second round of filtering with KEGG 

pathway and RNA-Seq data helps to generate a “genetic cluster” variable that carries 

meaningful information regarding compound toxicity.

Scoring algorithm for subchallenge 2

Predictions were ranked separately for each metric (i.e., Pearson Correlation and Spearman 

Correlation) by computing the average rank of each team for the predicted median and 

interquantile distance. The final rank was thus computed based on the average of the rank 

computed using the two metrics (mean ranking).
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Significance and robustness of subchallenge 2

Significance of predictions based on Fisher’s method—The statistical significance 

of predictions was verified by combining, using Fisher’s method, the p-value computed 

separately for the performances of each submission in predicting the median and the 

interquantile distance (Online methods). Performances are above what is expected at random 

(FDR<0.05) for 26 submissions when considering Pearson Correlation, for 39 submissions 

when considering Spearman Correlation, and for 24 submissions when considering both 

metrics (Supplementary Table 5).

Robustness analysis—The robustness analysis (Supplementary Fig. 4), computed as 

described for subchallenge 1, showed that the best performing team is robustly ranked first 

with all 5 submissions outperforming submissions from other teams (one-sided Wilcoxon 

signed-rank test, FDR<10−10). As shown from the FDR analysis, the top 2 submissions are 

not statistically distinguishable.

Best performing method for subchallenge 2

To predict chemical toxicities from chemical profiles, we developed computational models 

with four steps. The first step is feature selection. The curated chemical structure (provided 

by the organizer in Structure Data Format (SDF)) was used to generate Dragon25 descriptors 

for each compound. The derived descriptor matrices were range scaled to 0~1, and those 

with low variance (standard deviation < 1e-6) were excluded. For any pair of highly 

correlated descriptors (Pearson Correlation, p>0.95), one descriptor was removed randomly. 

The descriptors were then filtered based on their correlation to compounds’ cytotoxicity 

(EC10 values). There are 67 descriptors that are significantly (Pearson Correlation, p<0.05) 

correlated to EC10 values in >70% of the cell lines.

The second step is to evaluate the toxicity distributions of the compounds, and to determine 

the compound groups based on their toxicity profiles. We divided the 106 compounds into 4 

groups based on hierarchical clustering of their EC10 profiles across 487 cell lines.

The third step is to develop group specific models (Fig. 5c). For each group identified in 

step2, we used ANOVA to select features that are specific for compounds in the group 

versus compounds in the remaining groups. Then, the values of the selected features for all 

training compounds (91 compounds with measurable toxicity values) were used as the 

training data. Therefore, there are four Random Forest models that are specific to each 

cluster of compounds (model M1, M2, M3, M4).

The final step is to apply the models for predicting new compounds (Fig. 5d). For each new 

compound, we estimated its toxicity by a weighted average of its predictions from all four 

group-specific models. The weights were determined by its similarity to each of the 

compound cluster. The similarity involves calculating the compound’s distance to the cluster 

in the group-specific descriptor space, as well as its probability of being in the cluster using 

a classification model. If the compound’s distance to one cluster is smaller than a distance 

threshold, we think that cluster-specific model is appropriate to predict the new compound, 

and the weight is proportional to its probability of being in that group. Otherwise, we think 
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the model is inappropriate to predict the new compound, and its weight for predicting this 

specific compound would be 0. The distance threshold is determined by the applicability 

domain described by Zhen and Tropsha35 (with parameter z =2). In certain cases, where the 

new compound is out of the threshold for all four group-specific models, we predicted its 

activity using the entire training set and all the descriptors.

We apply the above modeling approaches to estimate both the median EC10 values and the 

interquartile distance for new compounds, but with small modifications. To predict a 

compounds’ median EC10 value, we built separate models to fit EC10 values measured from 

individual cell lines. We then derived the median EC10 value from the predicted cell-line-

specific EC10 values. To predict a compounds’ interquartile distance, we built a single set of 

models to fit the measured interquartile distance directly.

Predictability of compounds

We compared the cytotoxic response of all individuals to the two groups of compounds as 

shown in Supplementary Fig. 8; in this case the null hypothesis of equal mean of the two 

groups is now rejected (p-value < 2.2*10−16) and, morenotably, there is a clear difference in 

the shape of the two distributions. The first possible reason for the bimodal distribution of 

EC10 values of highly predictable compounds is that this group of compounds show very 

high or very low toxicity in all of the population; however, this is not the case because, if we 

test for multimodality the median EC10 values of highly predictable compounds, we verify 

that the distribution is unimodal (Hartigans’s dip test, p-value=0.70). The second possible 

reason is that highly predictable compounds are the ones that show multimodal distribution 

across the population; applying the Hartigans’s dip test for unmodality on all compounds 

(distribution of EC10 values across individuals), we verify that 35.71% (5 of 14) of the 

highly predictable compounds have a multimodal distribution (p-value<0.05, Supplementary 

Fig. 8b for two examples), while 0% (0 of 17) of the poorly predictable compounds have a 

multimodal distribution (they all have unimodal distribution, Supplementary Fig. 8c for two 

examples). The percentage of multimodal distributions is 10% for the remaining compounds 

(6 of 60).

Noise in the data—The distribution of the pooled variance for compounds with high 

predictability is slightly but significantly shifted to the left with respect to the distribution 

for compounds with low predictability (one tailed t-test, pval=0.027). Thus, as expected, 

noisy compounds are in general harder to predict with respect to compounds with a lower 

pooled variance.

Survey data analysis

We received responses for 75 submissions (out of 99) for subchallenge 1 and for 51 

submissions (out of 80) for subchallenge 2. This corresponds to 21 (out of 34) teams for 

subchallenge 1, and 14 (out of 23) for subchallenge 2. An overview of the information 

provided by the survey is shown in Fig. 6. The effect of used data and methods on the 

performances of submissions is shown in Supplementary Fig. 10 in terms of average 

Pearson Correlation. To deal with the fact that each team submitted up to 5 submissions that 

might not be independent of each other, predictions using the same data and methods (based 
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on the information from the survey) were averaged and considered as one prediction. Using 

this approach, we obtained 49 independent submissions for subchallenge 1 and 28 for 

subchallenge 2. Data and methods listed as “others” in Supplementary Fig. 10 and Fig. 6 are 

reported in Supplementary Table 6.

Input data used for predictions—To solve subchallenge 1, 89% of the participants who 

replied to the survey, used the SNPs data provided by the organizers either alone or along 

with other data using additional sources (e.g., pathway information, GO terms) to filter 

them. RNA-seq data were used for almost half (47%) of the submissions and this was shown 

to provide an overall improvement of performances. Only a minority of the participants 

(16%) included in their predictive model also information about chemical descriptors.

For subchallenge 2, most submissions (78%) did not take into account any genetic 

information to predict the cytotoxicity of new compounds. As for the chemical features, 

about 76% made use of at least one of the chemical descriptors provided by the organizers 

(CDK and SiRMS), but many teams (45%) included also or exclusively information from 

other sources like ChEMBL36 and PubChem37 public databases or different chemical 

descriptors like Dragon25 or ECFP38 (see Supplementary Table 6 for the full list).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge overview
The cytotoxicity data used in the challenge consists of the estimated effective concentrations 

that reduced viability by 10% (i.e., the EC10) data generated for 884 lymphoblastoid cell line 

in response to 156 common environmental compounds. Participants were provided with a 

training set of cytotoxicity data for 620 cell lines and 106 compounds along with genotype 

data for all cell lines, RNA-seq data for 337 cell lines, and chemical attributes for all 

compounds. The challenge was divided in 2 independent subchallenges: in subchallenge 1, 

participants were asked to predict EC10 values for a separate test set of 264 cell lines in 

response to the 106 compounds (only 91 toxic compounds were used for final scoring); in 

subchallenge 2, they were asked to predict population parameters (in terms of median EC10 

values and 5th to 95th interquantile distance) for a separate test set of 50 compounds.
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Figure 2. Significance of predictions
Submissions are compared with the null hypothesis for (a, b) subchallenge 1 and (c, d) 

subchallenge 2. For each metric used for scoring (Pearson Correlation (a) and probabilistic 

C-index (b) for subchallenge 1 and Pearson Correlation (c) and Spearman Correlation (d) for 

subchallenge 2), performances shown for submissions are computed compound by 

compound and then averaged across compounds. The null hypothesis is generated for 

random predictions computed by random sampling, compound by compound, from the 

training set. In panels (e, f) performances of randomly aggregated predictions (wisdom of 

the crowds, in green) is compared with individual predictions (first boxplot, in red). Green 

boxplots represent performances distributions when 5, 10, 15, 20, and all predictions are 

randomly selected and aggregated. Performances are shown in terms of average Pearson 

Correlation computed between predicted and measured values separately for each 

compound. Predictions were aggregated by averaging them. In order to aggregate only 

independent predictions, only one submission for each team was considered as the average 

of all predictions submitted by the team.
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Figure 3. Performances of predictions
Predictions were compared to the gold standard based on Pearson Correlation for (a) 

subchallenge 1 and (b) subchallenge 2. The heatmap in (a) illustrates performances of all 

predictions for all compounds used for evaluation: predictions are ranked as in the final 

leaderboard and compounds are clustered. Pearson Correlation values are saturated at −0.2 

and 0.2. The heatmap in (b) illustrates performances of all ranked predictions for predicted 

median and interquantile range (q95-q05).
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Figure 4. Advantages of using RNA-seq data
Performances of predictions for cell lines for which RNA-seq data were available were 

compared against performances of predictions for cell lines for which RNA-seq data were 

not available. Pearson Correlation and prob C-index were computed, for each compound, 

separately for cell lines for which RNA-seq data were and were not available, and the 

comparison shows that predictions for cell lines for which RNA-seq data were available are 

significantly better (paired t-test, p-value ≪10−10). All predictions are included in the 

analysis regardless of the actual use of the RNA-seq data.
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Figure 5. Best performing method subchallenge 1 & subchallenge 2
The prediction procedure of the best performing team of subchallenge 1. (a) Workflow of 

prediction for sub challenge 1. (b) Heatmap of number of cell lines in each category of 

“genetic cluster’ (1–10, x-axis) and geographic subpopulation (y-axis). (c) Modeling 

workflow used by team QBRC for Toxicogenetics Challenge subchallenge 2. The model 

starts from deriving potential toxicity-related features by comparing response data and 

chemical descriptor profiles (step1) and classify compounds based on their toxicity 

responses (step2). Then, group-specific models are built based on group-specific chemical 

features and the entire training set (step3). Finally, the toxicity of a new compound is 

calculated as a weighted average of the predicted toxicities from each group-specific model 

(step4). (d) In step3, differentially distributed features and all training samples are used to 

develop group-specific models. (e) In step4, model applicability domain and the similarities 

between the new compound and the compound group are used to determine the weights for 

each group-specific model. Details of each step can be found in the main text.
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Figure 6. Overview of methods and data used to solve the challenges
Overview of the input data, data reduction techniques, prediction algorithms, and model 

validation techniques used by participants to solve the challenge. Participants were asked to 

fill out a survey in order to be included in this publication as part of the NIEHS-NCATS-

UNC Dream Toxicogenetics challenge consortium; only data for teams which filled out the 

survey are shown here. Each row corresponds to a submission and they are ordered based on 

the final rank for subchallenge 1 and subchallenge 2, respectively. Data are referred to 75 

filled survey for subchallenge 1 (of 99 submissions) and 51 filled survey for subchallenge 2 

(of 80 submissions). This corresponds to 21 (of 34) teams for subchallenge 1, and 12 (of 23) 

for subchallenge 2.
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