59 research outputs found

    Global evaluation of SMAP/Sentinel-1 soil moisture products

    Get PDF
    MAP/Sentinel-1 soil moisture is the latest SMAP (Soil Moisture Active Passive) product derived from synergistic utilization of the radiometry observations of SMAP and radar backscattering data of Sentinel-1. This product is the first and only global soil moisture (SM) map at 1 km and 3 km spatial resolutions. In this paper, we evaluated the SMAP/Sentinel-1 SM product from different viewpoints to better understand its quality, advantages, and likely limitations. A comparative analysis of this product and in situ measurements, for the time period March 2015 to January 2022, from 35 dense and sparse SM networks and 561 stations distributed around the world was carried out. We examined the effects of land cover, vegetation fraction, water bodies, urban areas, soil characteristics, and seasonal climatic conditions on the performance of active–passive SMAP/Sentinel-1 in estimating the SM. We also compared the performance metrics of enhanced SMAP (9 km) and SMAP/Sentinel-1 products (3 km) to analyze the effects of the active–passive disaggregation algorithm on various features of the SMAP SM maps. Results showed satisfactory agreement between SMAP/Sentinel-1 and in situ SM measurements for most sites (r values between 0.19 and 0.95 and ub-RMSE between 0.03 and 0.17), especially for dense sites without representativeness errors. Thanks to the vegetation effect correction applied in the active–passive algorithm, the SMAP/Sentinel-1 product had the highest correlation with the reference data in grasslands and croplands. Results also showed that the accuracy of the SMAP/Sentinel-1 SM product in different networks is independent of the presence of water bodies, urban areas, and soil types.Peer ReviewedPostprint (published version

    Effect of Spectral Bandwidths on Linear Feature Extraction: An Evaluation of Landsat ETM+ and OLI Sensors

    Get PDF
    Hitherto there have been many studies comparing the usefulness of OLI and ETM+ sensors for linear feature extraction. However, not too much attention has been paid to the differences in the bandwidth of the two sensors. In this study, the suitability of Landsat ETM+ and OLI sensors for automatic detection of linear features by LINE algorithm was compared. In this study, eight regions in northern, central and southern parts of Iran were selected based on the diversity of lithology, the pristine status, and lack of human activities for the comparison of the two datasets. Results revealed that LINE algorithm performed better on the images with higher standard deviation. The ETM+ datasets are more suitable for linear feature extraction because ETM+ panchromatic band and first principal component analysis image (PC1 image) of ETM+ datasets have higher standard deviation compared to OLI datasets

    Using pixel-based and object-based methods to classify urban hyperspectral features

    Get PDF
    Object-based image analysis methods have been developed recently. They have since become a very active research topic in the remote sensing community. This is mainly because the researchers have begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral content of data. To evaluate the applicability of object-based image analysis methods for land-cover information extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, six supervised classification methods were selected from pixel-based category, including the maximum likelihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extraction methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. The effective feature number (EFN) was then obtained. Image objects were thereafter created using the fractal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several experiments have been carried out to find the best segmentation parameters. The classification accuracy of these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an urban area in Italy. The results reveal that when using any combination of feature extraction and classification methods, the performance of object-based methods was better than pixel-based ones. Furthermore the statistical analysis of results shows that on average, there is almost an 8 percent improvement in classification accuracy when we use the object-based methods

    The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform

    Get PDF
    Development of the Canadian Wetland Inventory Map (CWIM) has thus far proceeded over two generations, reporting the extent and location of bog, fen, swamp, marsh, and water wetlands across the country with increasing accuracy. Each generation of this training inventory has improved the previous results by including additional reference wetland data and focusing on processing at the scale of ecozone, which represent ecologically distinct regions of Canada. The first and second generations attained relatively highly accurate results with an average approaching 86% though some overestimated wetland extents, particularly of the swamp class. The current research represents a third refinement of the inventory map. It was designed to improve the overall accuracy (OA) and reduce wetlands overestimation by modifying test and train data and integrating additional environmental and remote sensing datasets, including countrywide coverage of L-band ALOS PALSAR-2, SRTM, and Arctic digital elevation model, nighttime light, temperature, and precipitation data. Using a random forest classification within Google Earth Engine, the average OA obtained for the CWIM3 is 90.53%, an improvement of 4.77% over previous results. All ecozones experienced an OA increase of 2% or greater and individual ecozone OA results range between 94% at the highest to 84% at the lowest. Visual inspection of the classification products demonstrates a reduction of wetland area overestimation compared to previous inventory generations. In this study, several classification scenarios were defined to assess the effect of preprocessing and the benefits of incorporating multisource data for large-scale wetland mapping. In addition, the development of a confidence map helps visualize where current results are most and least reliable given the amount of wetland test and train data and the extent of recent landscape disturbance (e.g., fire). The resulting OAs and wetland areal extent reveal the importance of multisource data and adequate test and train data for wetland classification at a countrywide scale

    Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

    Get PDF
    Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms. The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly improve the detection performance of the RX method. The detection performance of neither the Kernel-RX method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real time applications

    Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera

    Get PDF
    Time-of-flight cameras, based on Photonic Mixer Device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera

    Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait

    Get PDF
    Radar penetration in brine-wetted snow-covered sea ice is almost nil, yet reports exist of a correlation between snow depth or ice thickness and SAR parameters. This article presents a description of snow depth and first-year sea ice thickness distributions in three fjords of the Hudson Strait and of their tenuous correlation with SAR backscattering in the C- and X-band. Snow depth and ice thickness were directly measured in three fjords of the Hudson Strait from 2015 to 2018 in April or May. Bayesian linear regression analysis was used to investigate their relationship with RADARSAT-2 (C-band) or TerraSAR-X (X-band). Polarimetric ratios and the Cloude–Pottier decomposition parameters were explored along with the HH, HV and VV bands. Linear correlations were generally no higher than 0.3 except for a special case in May 2018. The co-polarization ratio did not perform better than the backscattering coefficients

    Caractérisation des Scènes Urbaines par Analyse des Images Hyperspectrales

    No full text
    La caractérisation d'un environnement tel que le milieu urbain est une tâche délicate car ce milieu est un phénomène complexe par différents aspects. Parmi ceux-ci, l'aspect géographique est considéré comme le plus important qui puisse être étudié par les technologies d'acquisition et les techniques d'analyse de la télédétection. En particulier, la télédétection hyperspectrale a montré son potentiel pour l'acquisition de données et l'extraction d'informations nécessaires pour la modélisation du milieu urbain. Dans cette thèse, pour l'analyse d'image hyperspectrale, deux stratégies supervisée et non supervisée ont été choisi. Nous avons appliqué les techniques de Mise en Correspondance Spectrale, en tant que les méthodes supervisées, en vue de la cartographie des matériaux urbains. Afin d'améliorer les résultats de ces techniques, nous avons proposé une technique de fusion au niveau de la décision. Par ailleurs, une technique non supervisée basée sur l'Analyse en Composantes Indépendantes pour la séparation spectrale et la classification, comme une solution de problème de mélange, est proposée. Elle emploie la technique de groupage C-Moyens Flou, afin d'obtenir une carte de classification floue et sub-pixelique. Ces techniques sont employées sur les données images hyperspectrales acquises par le capteur CASI sur la ville de Toulouse, en France. Elles sont enregistrées en 32 canaux spectraux avec la résolution spatiale de 2 mètres et 48 canaux en 4 mètres de résolution spatiale. Enfin, nous avons comparé les résultats de ces méthodes avec des données de vérité terrain et une évaluation du taux d'erreur de classification a été réalisée pour toutes les techniques
    • …
    corecore