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Abstract: Radar penetration in brine-wetted snow-covered sea ice is almost nil, yet reports exist
of a correlation between snow depth or ice thickness and SAR parameters. This article presents a
description of snow depth and first-year sea ice thickness distributions in three fjords of the Hudson
Strait and of their tenuous correlation with SAR backscattering in the C- and X-band. Snow depth
and ice thickness were directly measured in three fjords of the Hudson Strait from 2015 to 2018
in April or May. Bayesian linear regression analysis was used to investigate their relationship
with RADARSAT-2 (C-band) or TerraSAR-X (X-band). Polarimetric ratios and the Cloude–Pottier
decomposition parameters were explored along with the HH, HV and VV bands. Linear correlations
were generally no higher than 0.3 except for a special case in May 2018. The co-polarization ratio did
not perform better than the backscattering coefficients.

Keywords: sea ice; snow; remote sensing; synthetic aperture radar; Nunavik; Bayesian linear
regression

1. Introduction
1.1. Context

Seasonal snow and ice covers in Nunavik are affected by the impacts of climate change:
Kangiqsujuammiut (people of Kangiqsujuaq, Nunavik, in Canada) have reported later sea
ice freeze-up in the fall [1], as well as less snow on the ground, earlier sea ice breakup in
spring, changes in travel routes and more variable winds [2]. Inuit lives are embedded
in the climate change context, and its impacts on sea ice have practical and immediate
consequences on personal safety and access to travel and marine wildlife [3]. With shipping
traffic in the Canadian Arctic having markedly increased over the last decade [4] and 2040–
2064 climate projections for the region showing shorter snow cover periods [5], sea ice
conditions and their impact on land-use and marine transport will continue to evolve. Yet,
historically, the scientific community has undertaken monitoring efforts at scales too coarse
to account for regional or local variations in ice conditions [3].

In this study, we investigate snow depth and ice thickness distributions in Salluit,
Deception Bay, and Kangiqsujuaq, all Nunavik fjords of the Hudson Strait, as well as their
correlation with C- and X-band SAR. This work is relevant due to land use and shipping-
related operations by communities and industries in the area and for the sea ice remote
sensing community. It is part of the Ice Monitoring project, a collaboration between the
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Kativik Regional Government, Raglan Mine (a Glencore company), the Northern Villages
of Salluit and Kangiqsujuaq, and Institut national de la recherche scientifique (INRS). Both
communities’ Land Holding Corporations gave their approval for this project. The Avataq
Cultural Institute was consulted to ensure the project did not encroach on archaeological
sites important to Inuit.

1.2. Local Snow Depth and Sea Ice Thickness Monitoring in Nunavik and Nunavut

Using direct measurements, Iacozza and Barber [6] observed that the distribution
of snow depth on smooth first-year sea ice is governed by snowfall and drifting events.
In Nunavik, Tremblay et al. [7] have characterized snow depth and ice thicknesses on
local trails near Kangiqsujuaq, Umiujaq, Kangiqsualujjuaq and Kawawachikamach, in
the context of increased travel risk due to ice instability and weather unpredictability.
Their community-based participatory study revealed that some ice trail areas remained
dangerous even 5 weeks after freeze-up and when average ice thickness was roughly 50 cm.
Similarly, snow depth and ice thickness were monitored as part of a community-based
observation network in Barrow, Alaska, Clyde River, Nunavut, and Qaanaaq, Greenland [8].
Their comparison revealed thinner ice in Qannaaq than in the other sites, despite thinner
snow which should promote ice growth. This was attributed to warm Atlantic water
encroachment in the area progressing farther inland than in the past. More recently,
the SmartICE program developed a sled-mounted electromagnetic induction sensor to
document ice thickness along travel routes in Nunavut communities [9,10]. They support
public safety through near-real-time data generation and dissemination.

1.3. Relationship with C- and X-Band Backscattering

SAR sensors are widely used for sea ice monitoring, both by governments and in
scientific communities, due to their ability to operate in the presence of clouds and at
night-time [11]. Current applications of this technology include characterizing melt pond
fraction [12,13] and community-relevant sea ice features [10,14], as well as estimating ice
stability [15]. Recent work by Yackel et al. [16] showed that, prior to melting onset, the daily
variance in C- and Ku-band backscattering is correlated with relative snow thickness. While
the majority of these sea ice applications rely on the C-band [11], other SAR frequencies like
the Ku-, X-, and L-bands have also been investigated [17–20]. The X-band can adequately
discriminate between newly formed ice and its surroundings [17] and is more sensitive
to melt onset and surface roughness than the C-band [21], as well as changes in top-layer
snow salinity [19].

This article and the references cited hereafter focus on undeformed first-year sea ice
in cold conditions with air temperatures below the freezing degree point. We explore
the VV, HV and VV polarizations as well as polarimetric ratios and the Cloude–Pottier
decomposition parameters [22]. Nandan et al. [23] have recently demonstrated the extent
to which SAR penetration in the snow covering first-year sea ice is limited by brine. They
reported a maximum penetration of four cm into the brine-wetted snow for the C- and
X-bands, near Resolute Bay in Nunavut. How can these results be reconciled with several
observations of a correlation between undeformed sea ice thickness or snow depth and
SAR parameters? Indeed, linear correlation coefficients of 0.4 to 0.6 were reported between
ice thicknesses ranging from 15 to 150 cm and the HH or VV backscattering coefficients
in the X-, C- or L-band over undeformed first-year drift ice in the Sea of Okhotsk [24,25].
In these cases, the co-polarization ratio (VV/HH) performed better than the individual
polarizations, reaching an r-squared of 0.8 for the C-band [25]. A strong exponential
relationship was observed between ice thickness ranging from 0 to 200 cm and the C-band
CP ratio for drift and landfast undeformed first-year ice in the Labrador Sea, based on
simulated compact polarimetry data [26]. This ice thickness estimation parameter is based
on circular right-hand transmission and linear HH and VV detection, i.e., the compact
polarimetry mode developped for the RADARSAT Constellation Mission [26].
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As for snow covers on smooth landfast first-year ice, Gill et al. [27] noted that a
positive correlation between C-band HH backscattering and snow depth is best observed
in cold (−7.9 ◦C) than warm conditions (−0.4 ◦C). The associated r-squared values ranged
from 0.3 to 0.8 for incidence angles of 27◦ to 36◦, with measurements performed in Franklin
Bay, Northwest Territories. In contrast, Nandan et al. [19] rather observed that the HH
backscattering was greater from a thin snow cover of 4 cm than from snow 8 or 14 cm deep,
which they attributed to steeper salinity gradients in thin snow causing enhanced surface
scattering. In this study of sea ice near Resolute Bay, Nunavut, they also noted that the HH
polarization was more sensitive to snow depth variations than its VV counterpart.

1.4. Objectives

This article combines field measurements and remote sensing data in order to char-
acterize seasonal snow-covered sea ice from 2015 to 2018 in three Nunavik fjords of the
Hudson Strait. The objectives of this article are to (1) characterize and explain snow depth
and ice thickness distributions in Salluit, Deception Bay, and Kangiqsujuaq over three
winters (2015–2018) and (2) investigate the empirical relationship between C- and X-band
polarimetric SAR parameters and snow depth and ice thickness.

2. Materials and Methods
2.1. Study Areas

The study sites are three neighbouring fjords located along the coast of Nunavik in
the Hudson Strait (Figure 1). Two of them are home to Inuit communities: Salluit and
Kangiqsujuaq. The third, Deception Bay, is located between the two communities, 50 km
west of Salluit. Two mining companies have the marine infrastructure in Deception Bay,
where their icebreakers transit year-round except from the mid-March to 1 June black-out
window [28].

Freeze-up occurs in November or December and breakup in June or July [1,29–31];
freeze-up generally proceeds through consolidation of young ice types. During the ice
season, the study areas are covered in undeformed and smooth landfast first-year sea ice,
except along the broken ice track left by ice-breaking transport in Deception Bay and near
the shores where the tides lead to deformation. These features were excluded from the study.
There is typically some small-scale surface roughness, on the order of the radar wavelength.
Some areas may also sometimes feature either radar-smooth ice, or ice pieces sticking out
of the ice by up to 15 cm. Monthly total precipitation data from Salluit airport is presented
in the supplementary materials (Figure S1). No weather station was operating in Deception
Bay during the study and no precipitation data was available from the Kangiqsujuaq
airport weather station. The bathymetry maps (Figure S2 in the supplementary) show
maximum water depths greater than 100 m in Salluit, 80 m in Deception Bay, and 200 m in
Kangiqsujuaq. The difference between high and low tide ranges from 1.5 to 5 m in Salluit,
from 2 to 5.5 m in Deception Bay, and from 4 to 8.5 m in Kangiqsujuaq [32]. In Deception
Bay, GENIVAR [28] measured water salinity between 29 and 33 ppt. Top-layer ice salinity
measured in January 2018 ranged from 5 to 10 psu [29]. Brine-wetted snow salinity near the
ice surface ranged from 23 to 33 psu in January 2018 [29] and from 7 to 19 psu in May 2018.

2.2. Snow Depth and Sea Ice Thickness Measurements

Measurements were performed in January–February and April–May of 2016, 2017 and
2018, for each site, except for April 2016 where bad weather prevailed in Salluit (Table 1).
Snow depth was measured using a meter-rule and ice thickness using a 2.5 cm diameter
Kovacs ice auger and measuring tape. For a given site, sampling was done at 20 to 30 target
locations arranged in a grid-like pattern with 1 to 2 km spacing (Figure 2) and within 48 h
or less except for Kangiqsujuaq in May 2018. This article focuses on the end-of-winter
April–May data.
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Figure 1. Map of Nunavik in Inuit Nunangat. Inset: Salluit, Deception Bay and Kangiqsujuaq.

Table 1. Fieldwork measurement campaign dates.

Year Salluit Deception Bay Kangiqsujuaq

2016 25 January 22 January 21 January
- 23 April 19 and 20 April

2017 18 and 19 January 13 and 14 January 10 January
27 April 28 and 29 April 25 April

2018 30 January 1 and 2 February 27 and 28 January
9 May 11 May 8 and 15 May

n|

n|

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community
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USDA, USGS, AeroGRID, IGN, and the GIS User Community
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Figure 2. January 2018 sampling locations for Salluit, Deception Bay, and Kangiqsujuaq. Also shown
for Deception Bay: the ship track (blue) and wharves (anchor markers). For Salluit and Kangiqsujuaq,
community location is indicated with a white star.
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Tables 2 and 3 show mean snow depth and ice thickness for January–February and
April–May measurements, respectively. Kangiqsujuaq always presented the deepest snow
and thinnest ice (except in January 2017). Snow was deeper in January 2016 than in 2018
(Table 2), despite earlier measurements by one week (Table 1). Ice thickness at the end of
the winter (Table 3) was greater in 2016 than in the other two years for both Deception
Bay and Kangiqsujuaq; no data are available for Salluit in April–May 2016. Deception Bay
presented its thinnest ice cover in 2017, whereas both 2017 and 2018 were similar for Salluit
and Kangiqsujuaq.

Note that even in 2016 with an average thickness of 1.43 m, the ice in Deception Bay
fell short of the historical range. Indeed, the most recent measurements, probably dating
back to 1991, gave a thickness of 1.7 to 2 m [33]. In contrast, thicknesses measured from
2015 to 2018 ranged from 1.10 to 1.65 for extreme values and 1.20 to 1.43 on average. The
ice in Deception Bay was therefore generally 50 cm thinner during our study than 25 years
prior. Although historical data for the other two sites was not available, reports from 2007
by local experts stated that the ice was forming later and growing thicker more slowly than
before in Salluit and Deception Bay [33].

Table 2. Mean January–February snow depth and ice thickness with standard deviations in
parentheses.

Site
Snow (cm) Ice (cm)

2016 2017 2018 2016 2017 2018

Salluit 15 (4) 4 (3) 6 (2) 78 (6) 74 (5) 81 (3)
Deception Bay 11 (6) 8 (3) 8 (5) 89 (5) 62 (3) 83 (9)
Kangiqsujuaq 20 (7) 10 (4) 9 (4) 73 (7) 64 (11) 69 (6)

Table 3. Mean April–May snow depth and ice thickness with standard deviations in parentheses.

Site
Snow (cm) Ice (cm)

2016 2017 2018 2016 2017 2018

Salluit - 14 (10) 11 (7) - 132 (9) 133 (3)
Deception Bay 16 (12) 15 (12) 8 (6) 143 (16) 121 (8) 133 (10)
Kangiqsujuaq 24 (13) 25 (11) 22 (11) 117 (10) 101 (7) 101 (8)

2.3. Satellite SAR Data
2.3.1. RADARSAT-2

The Canadian Ice Service secured RADARSAT-2 Wide-Fine Quad-Pol single look
complex images for each site from 2015 to 2018 (Table 4). The C-band satellite operates at
5.405 GHz (5.55 cm wavelength), with a repeat period of 24 days. The acquisitions were
performed in the descending orbit at roughly 6:30 local time (UTC-5 h). Six images were
acquired per winter except in 2016, where a Deception Bay acquisition was cancelled. Scene
size was 50 by 25 km before subsetting, with a spatial resolution of 5.2 and 7.6 m (range and
azimuth, respectively) [34]. Air temperature at the time of acquisition was always below
−10 ◦C except for Kangiqsujuaq in May 2018 where it was −3 ◦C (see Tables S1 and S2 in
the supplementary). The noise-equivalent σ0 value in the Wide-Fine Quad-Pol mode is
−33± 6 dB [34].

The RADARSAT-2 images were processed with SNAP’s Sentinel-1 Toolbox (version
6.0.0), a European Space Agency (ESA) open-access software. The toolbox was used
through java-snap, a Java application made available on Gitlab [35]. After subsetting to
the study areas, the data was converted from digital number to backscattering coefficient
σ0 [36]. Speckle filtering was performed over a 7 × 7 window using the Refined Lee or
Polarimetric Refined Lee filter depending on the desired output (backscattering coefficient
or covariance matrix). Lee filters preserve image details and contours [37]. This processing
follows the ESA Polarimetric Tutorial [38], in which no multilooking is performed.
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Table 4. RADARSAT-2 acquisition parameters. Local time (LT) is UTC-5 hours.

Site Orbit Acquisition Incidence Acquisition Number
Time (LT) Angle Period of Images

Salluit FQW16 6:30 35.4◦–37◦ 2015-12-19 18
2018-05-01

Deception Bay FQW16 6:25 35.4◦–37◦ 2015-12-26 17
2018-05-08

Kangiqsujuaq FQW17 6:13 36.4◦–38◦ 2015-12-23 18
2018-05-0

We computed the Cloude–Pottier decomposition to extract the entropy (H), anisotropy
(A) and alpha angle (alpha) [22,39]. Data position in the H-alpha plane provides informa-
tion on the nature of dominant scattering mechanisms, for instance, surface or volume
scattering [39]. The geometric correction was then performed using the Range-Doppler Ter-
rain Correction algorithm using the freely accessible Canadian Digital Elevation Model [40]
and nearest neighbour resampling for both the image and the DEM. Pixel spacing after
this step was 8 m. The images did not present a large enough homogeneous area to
estimate the equivalent number of looks after processing using the procedure outlined
by Anfinsen et al. [41]. After geometric correction, linear σ0 was converted to decibels.
The co-polarization VV/HH and the cross-polarization VH/VV and HV/HH ratios were
computed from linear σ0.

2.3.2. TerraSAR-X

The DLR secured TerraSAR-X or TanDEM-X acquisitions of StripMap dual-pol single
look complex images over Deception Bay from 2015 to 2018. Acquired in ascending orbit 13
at 17:30 local time (UTC-5 h) with polarizations HH and VV, the images have an incidence
angle of 38◦. A total of 75 images were acquired between 2015-12-23 and 2018-07-26. The
X-band satellites operate at 9.65 GHz (3.11 cm wavelength) with a repeat period of 11 days.
Images were acquired in a dual-pol orbit with polarizations HH and VV. The scene size
before subsetting to the study area was 15 by 50 km, with a spatial resolution of 0.9 and
2.5 m for range and azimuth, respectively [42]. Air temperature at the time of acquisition
was always below −10 ◦C (see Table S2 in the supplementary). The noise-equivalent σ0
value in the StripMap mode for orbit 13 is −24.5 dB [42].

The DLR data was processed by using their in-house Multi-SAR System [43]. This
processing includes converting from digital number to backscattering coefficient, multi-
looking to produce square pixels and increase radiometric quality, geometric correction
using bilinear interpolation for the DEM and cubic convolution resampling for the image,
and image enhancement to reduce speckle [44]. The output images have a pixel spacing of
2.5 m pixels with a radiometric resolution of 1.6 looks. Linear σ0 was converted to decibels.

2.3.3. Computing SAR Parameter Seasonal Medians

Seasonal medians were computed from the satellite images acquired in each season.
Areas of interest (AOIs) roughly 120 by 100 m and each containing between 600 and
650 pixels were distributed over the homogeneous study areas in a grid-like pattern with
0.7 to 1 km separation, avoiding special features like the shore or a ship’s track. The Salluit,
Deception Bay, and Kangiqsujuaq study areas counted 35, 43, and 78 AOIs, respectively.
Median backscattering was computed over each AOI and then over all AOIs for a given
image, yielding a single median value per image. Only images between January and
May were used to avoid the freeze-up and spring transitions. The seasonal medians
were computed from the resulting time-series to yield a single value per year, allowing
interannual comparisons between sites. This step was performed using Python [45]. For
the comparison with the X-band, this step was also performed on the processed TerraSAR-X
images as described in Dufour-Beauséjour et al [31]; 32 of the 43 AOIs were covered by the
TerraSAR-X images, with a higher spatial resolution.
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2.3.4. Extracting SAR Parameter Values Coincident with Thickness Measurements

For every field campaign except those in January 2016, thickness measurements were
paired with the image acquired in closest temporal proximity. The relative timing of
fieldwork and image acquisitions is presented in the supplementary materials (Tables S1
and S2). We used Python to identify pixels coinciding with sampling locations and to
extract the backscattering coefficient value over that location [46]. To mitigate speckle noise,
a 3 × 3 pixel window average was used for the RADARSAT-2 images, corresponding to
an area size of 576 m2. For the comparison between the C-band and the X-band, mean
TerraSAR-X values were extracted over a 9× 9 pixel window, which corresponds to 506 m2.
The co-polarized SAR backscattering values were well above the noise-equivalent σ0 for
each sensor. Linear correlation coefficients were computed between thickness variables
and all available SAR parameters. Because the Bayesian linear regression is a relatively
new method in our field, we chose to apply it to a single parameter. The HH backscattering
coefficient was chosen because it is commonly used in sea ice applications, was available
for both radar frequencies, and was not systematically outperformed by another parameter
in terms of the linear correlation coefficient (see Table S3 in the supplementary).

2.4. Statistical Tools
2.4.1. Bayesian Framework

We used Bayesian linear regression to investigate a potential linear relationship be-
tween snow depth or ice thickness and C- or X-band SAR. The advantage of the Bayesian
framework, compared to the frenquentist approach (e.g., Pearson’s correlation coefficient)
is that it provides a quantitative evaluation of the evidence against the null hypothesis [47].
It also relies on a direct pairwise comparison between hypotheses based on a probability
ratio, a quantity which is easy to interpret. Bayesian statistics are susceptible to the same
caveats as the frequentist approach in cases of spatial autocorrelation: an illusion of more
independent data points than there really are, which may for instance exaggerate the
relationship between two variables if their spatial structures are aligned [48]. In a Bayesian
analysis, different hypotheses are compared to identify which is most likely, and what
values its parameters are most probable to take on. Bayesian linear regression is performed
in two steps: model fitting and model comparison.

For a given hypothesis H, Bayes’ theorem states:

p(H|D) =
p(D|H)p(H)

p(D)
(1)

where

p(H|D) = the probability H given the data (D), i.e., the posterior probability of the model;
p(D|H) = the probability of the data (D) given H, i.e., the likelihood;
p(H) = the probability of H, i.e., the prior probability of the model;
p(D) = the probability of the data (D), i.e., the evidence.

2.4.2. Model Fitting: Bayesian Linear Regression

During model fitting, Bayes’ theorem is used to infer the probability distribution of a
given model’s parameters based on the observed data (D). This is done for each hypothesis
being considered. Equation (2) presents a linear model for a hypothesis H denoted as (α, σ),
where the model parameters are coefficients α and standard deviation σ. It is given here
for the ith sample of a dataset. The noise term ηi in Equation (2) comes from a Gaussian
probability distribution centered on zero with parameter σ as a standard deviation, i.e.,
ηi ∼ N(0, σ), as shown in Equation (3). It is assumed to hold all of the measured data’s
variability.

yi = xi · α + ηi (2)

where
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yi = the variable being modeled,
xi = a vector representation of the model variables,
α = a vector representation of the coefficients,
ηi = a noise term depending on model parameter σ,

and

p(ηi|σ) =
1

σ
√

2π
exp
(
−1

2

(ηi
σ

)2
)

(3)

where

σ = a model parameter.

Rearranging Equation (2) to express the noise term ηi as the difference between
observations yi and model results xi · α, we have:

yi − xi · α = ηi (4)

By combining Equations (4) and (3):

p(ηi|σ) = p(yi, xi|α, σ) =
1

σ
√

2π
exp

(
−1

2

(
yi − xi · α

σ

)2
)

(5)

Assuming measurements are independent, the probability p(D|H) of observing the
data given model (α, σ) (i.e., the likelihood for a particular set of parameter values) can
be developped as a product of the individual probabilities p(yi, xi|α, σ) for each of the N
samples in the dataset:

p(D|H) = p(D|α, σ) =
N

∏
i=1

p(yi, xi|α, σ) (6)

p(D|H), which is the quantity needed for model comparison, can now be computed
by combining Equations (5) and (6):

p(D|H) =
N

∏
i=1

1
σ
√

2π
exp

(
−1

2

(
yi − xi · α

σ

)2
)

(7)

Equation (7) is computed over a range of discrete values for all model parameters. The
resulting probability distribution includes pmax(D|0, σ), the maximum probability in the
distribution when all α coefficients are zero, i.e., the null hypothesis H0, and pmax(D|α, σ),
the maximum probability that can be found within the parameter space, i.e., the non trivial
hypothesis H1. Other hypotheses can be constructed from the linear model by setting
only some of the coefficients to zero. The parameter space should accomodate the full
distribution of each parameter’s marginal probability, i.e., p(α1), p(α2), etc. Examples for
our model are shown in the supplementary (Figure S7). The source code for our analysis is
available on GitHub [49].

2.4.3. Model Comparison: Bayes Factor

Models are compared based on their probability given the data, i.e., p(Hi|D). Al-
though these probabilities cannot be computed directly, their pairwise ratio can be esti-
mated based on each model’s posterior probability p(D|Hi). In the absence of a priori
information on which values the model parameters will take, we assume a uniform prior
probability p(H) for every possible set of parameter values. The p(Hi) therefore cancel out,
as well as the evidence p(D) which is the same regardless of the hypothesis. This pairwise
ratio is called the Bayes factor K; it quantifies the evidence in favor of one of the hypotheses.
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Considering two hypotheses, e.g., a non trivial hypothesis H1 and the null H0 and using
Equation (1), the Bayes factor is therefore:

K =
p(D|H1)

p(D|H0)
' p(H1|D)

p(H0|D)
(8)

If K = 1, the data offers no evidence against H0. A value of K = 100.5 is deemed
sufficient to give substantial evidence against H0, while K = 10 and K > 100 respectively
denote strong and decisive evidence [50]. We used the Bayes factor to compare a linear-
dependence hypothesis Hi with a null hypothesis H0, where the parameter associated with
the linear dependency is set to zero. We computed the Bayes factor using each hypothesis’
maximum posterior probability:

K ' pmax(H1|D)

pmax(H0|D)
(9)

2.4.4. Application to Snow Depth, Ice Thickness and SAR

We explored the dependence of the C- and X-band SAR HH log-scale backscattering
coefficient on snow depth and ice thickness by assuming a linear relationship with either
snow depth hs via parameter γ (Hsnow), ice thickness hi via parameter δ (Hice), or with both
snow depth and ice thickness (Hboth). Our approach to investigating the linear correlation
between variables under a Bayesian framework is similar to the one proposed by Wetzels
and Wagenmakers [47]. From previous studies, we expect γ < 0 and δ > 0. The dual-
linear-dependence hypothesis Hboth is therefore a function of an offset parameter σHH0 ,
linear terms γhs and δhi, and a noise parameter ησ, as shown in Equation (10). The null
hypothesis H0 is Equation (10) with both the γ and δ parameters set to zero; the snow-only
hypothesis Hsnow is the same equation with only δ set to zero; the ice-only hypothesis Hice
is Equation (10) with only γ set to zero. The most likely hypothesis out of the four (H0,
Hsnow, Hice, Hboth) is the one which surpasses all the others based on the pairwise Bayes
factor K. Mean and standard deviations for the marginal probability distributions of each
model parameter are presented in the supplementary (Figures S10 to S13).

σHH = σHH0 + γhs + δhi + ησ (10)

where

σHH = backscattering coefficient,
σHH0 = offset,
γ = snow slope,
hs = snow depth,
δ = ice slope,
hi = ice thickness,
ησ = backscattering coefficient variability.

2.4.5. Geary’s C for Spatial Autocorrelation

We used Geary’s C to investigate the presence of autocorrelation in our snow depth
and ice thickness measurements. Real environments are structured by physical processes,
such as currents and winds, which create gradients and patches [51]. In a variable such
as snow depth or ice thickness, these features manifest as spatial autocorrelation - nearby
measurements take values that are most or less similar than expected for a randomly
assigned pair. This dependence violates the independence assumption central to many
statistical tests such as Pearson’s correlation coefficient. Autocorrelation will generally
exaggerate the significance of such a test, for instance lowering its p-value [52]. Geary’s C
is a statistic developed to quantify spatial autocorrelation and for which a p-value may be
evaluated for significance. Positive autocorrelation translates to a C value between 0 and 1,
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and negative autocorrelation produces values greater than 1; the no-correlation value is
C = 1 [51].

3. Results

Here we present spatial distributions for snow depth and ice thickness measurements
and an estimation of their spatial autocorrelation using Geary’s C and seasonal median
values for polarimetric parameters H-α and the HH backscattering coefficient, for all cases
in the study. We then present the linear correlation coefficients between these variables and
the results of the Bayesian linear regression analysis.

3.1. Snow Depth and Ice Thickness Spatial Distributions

Figure 3 highlights the spatial distribution of snow depth by showing end-of-winter
standardized thickness measurements, color-coded according to their deviation from the
mean, and the associated Geary’s C value when its p-value was above 0.05. These results
serve to evaluate the reliability of the statistical analyses presented in Section 3.3. In Salluit,
snow accumulation is concentrated in the center of the study area in 2017, with a C value
of 0.1 indicating strong positive autocorrelation, while being rather heterogeneous in 2018.
In Deception Bay, the 2016 distribution is also heterogeneous. In 2017, snow accumulated
to the north-west of the study area, around Moosehead Island, as reflected by a C value
of 0.2. In 2018, accumulation appears to follow a gradient aligned to the north-east, with
the deepest snow along the north-eastern shore and in front of the fjord’s transverse arm.
In Kangiqsujuaq, snow depth seems to increase along a south-east gradient for the three
years, with higher accumulation in front of the community and along the south-eastern
shore. When tested using the Shapiro–Wilk test, snow depth measurements rejected the
normality hypothesis for three cases: Salluit in 2017 and Deception Bay in 2017 and 2018
(see Figure S3 in the supplementary materials).

Figure 4 shows the spatial distribution of ice thickness for the same cases. Geary’s
C could not be reliably determined for any of the cases. Notable spatial structures in
Salluit include thicker ice to the south-west of the study area both in 2017 and 2018. In
Deception Bay, the ice was generally thicker along the south-western shore for all years,
and thinner around Moosehead Island in 2017. In Kangiqsujuaq, features vary from year to
year: thinner ice along the fjord’s deepest area in 2016, a south-eastern gradient in 2017, and
thicker ice in the north of the broader 2018 study area. When tested using the Shapiro–Wilk
test, ice thickness measurements rejected the normality hypothesis for two cases, namely
Deception Bay in 2017 and 2018 (see Figure S3 in the supplementary materials).

3.2. C- and X-Band SAR Seasonal Medians

Figure 5 shows seasonal median entropy (H) and alpha angle in the C-band, as well as
HH backscattering coefficients in the C-band and the X-band when available, for each site
and each season. All cases fall in the region of the H-alpha plane associated with surface
scattering, i.e., alpha < 40◦ [39]. For Salluit, 2015–2016 stands out with a higher alpha angle
than the other seasons, suggesting a bigger volume contribution, and a lower C-band HH
backscattering of −21 dB. Of all the sites and cases put together, Deception Bay 2015–2016
is the closest to the region of volume scattering. Its C-band backscattering is also the lowest
with −25 dB compared to −17 dB in the next two years. In the X-band, the backscattering
is also lowest that year with −20 dB. The difference in backscattering intensity between
the C- and X-band is −5 dB for 2015–2016, zero in 2016–2017, and −1 dB in 2017–2018.
For Kangiqsujuaq, the alpha angle was generally higher than for the other sites except in
2015–2016, where it was surpassed by the remarkably high alpha angle for Deception Bay.
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Figure 3. Standardized end-of-winter snow depth for Salluit (left), Deception Bay (center), and
Kangiqsujuaq (right), for 2016 (top), 2017 (middle) and 2018 (bottom). Markers are color-coded
according to the measurement’s deviation from their dataset’s mean: thinner than the mean by one
standard deviation (SD) or more (blue), equal to the mean depth (white) or greater than the mean by
one standard deviation or more (red). Geary’s C is annotated in each case, with either the statistic’s
value or n/d if its p-value was above 0.05. In the background for terrain are 2015 RADARSAT-2 HH
images from December 19, 26, and 23, respectively, with the sea ice masked out in gray. White stars
indicate Salluit, wharves in Deception Bay, and Kangiqsujuaq. Moosehead Island is marked by a
gray ellipse.

- 1 SD
mean

+ 1 SD

Ice thickness

2 km 2 km 2 km

Figure 4. Same as Figure 3 but for ice thickness.
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Figure 5. Seasonal median SAR parameters for Salluit, Deception Bay, and Kangiqsujuaq in 2015–
2016, 2016–2017, and 2017–2018. Top: Alpha angle versus entropy in the C-band, plotted in the
Cloude–Pottier H-alpha plane [39]. Bottom: HH backscattering coefficients in the C-band (full
markers) and X-band (empty markers).

3.3. Relationship between SAR and End-of-Winter Snow Depth or Ice Thickness

The linear correlation coefficient (r-squared) between the C-band HH backscattering
coefficient and either snow depth or ice thickness at the end of the winter is between zero
and 0.1 for all cases in Salluit. In Deception Bay, it ranged from zero to 0.3 for the C-band
and zero to 0.6 for the X-band, and was always zero in Kangiqsujuaq (Figures S4–S6 in the
supplementary materials). We also investigated the following parameters: VV and HV
backscattering coefficients, the VV/HH co-polarization ratio, the HV/HH and VH/VV
cross-polarization ratios, and the entropy, anisotropy and alpha angle. They did not
perform systematically better than the HH band as shown in the supplementary materials
(Tables S3 and S4), despite the VV band sometimes having an r-squared 0.1 higher than
the HH band or the alpha angle have a linear correlation coefficient of 0.5 with both snow
depth and ice thickness in Deception Bay 2017.

Figure 6 shows the most likely hypothesis from the Bayesian linear regression analysis
of the relationship between the C- or X-band HH backscattering coefficient and either
snow depth, ice thickness, or both. The associated pairise Bayes factor K is shown in
the supplementary materials (Figures S8 and S9). In the Salluit cases, the most likely
hypotheses for 2017 and 2018 were the null and a negative relationship between C-band
backscattering and snow depth, respectively. In Deception Bay, the most likely hypothesis
for the C-band in 2016 was a negative relationship with ice thickness, while the null was
most likely for the X-band. In 2017, it was a negative relationship with snow depth for
both the C- and X-band. In 2018, the most likely relationship was a positive one with ice
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thickness for both bands. In Kangiqsujuaq, no hypothesis was more likely than the null for
the three C-band cases.

Figure 6. Most likely hypothesis in the Bayesian linear regression analysis for HH backscattering vs
snow depth and ice thickness, out of the null (H0, in white), snow (Hsnow, in gray), and ice (Hice, in
blue). The sign of the linear relationship is identified with a plus or minus sign.

4. Discussion

In this section, we discuss the spatial distribution of environmental variables ice
thickness and snow depth, the relationship between C- or X-band backscattering and
either variable, the interpretation of Bayesian linear regression results and perspectives for
future work.

4.1. Spatial Structure in Environmental Variables

Here we investigate spatial structure in snow depth and ice thickness, in part because
of its possible impact on our correlation analysis. Consider similar spatial structures
in two environmental variables A and B (e.g., ice thickness and ice surface roughness),
caused either by chance or by a physical process which affects both of them. An observed
correlation between variable A and a third variable C (e.g., SAR backscattering) could be
the accidental byproduct of a correlation between variables B and C, mirrored onto variable
A because of its spatial structure’s alignment with that of variable B.

4.1.1. Snow Depth Distribution

According to Geary’s C, snow depth presented spatial autocorrelation in half of the
cases, while the test was inconclusive for the other half (Figure 3). A total of 30 measurement
points was sometimes insufficient to get a conclusive statistic. This precluded the use
of more advanced spatial structure analysis tools such as correlograms. We therefore
conservatively assume all cases presented spatial autocorrelation.

Wind action is known to cause preferential snow accumulation patterns, such as in
Van Mijenfjorden, a Norwegian fjord of the Svalbard archipelago [53]. The heterogeneous
snow depth distribution observed in Salluit in 2018 (Figure 3) suggests along-fjord winds
might have transported snow in and out of the study area. Spatial structure would then be
caused by another factor than wind alone, such as ice surface roughness [6]. By contrast, in
2017 the snow accumulated in the middle of the Salluit study area. Because the C-band
backscattering was similar in both seasons, suggesting comparable ice roughness, we
speculate that dominant winds were oriented parallel to the fjord length during deposi-
tional or drifting events in 2017. There are no recent wind data available for Salluit; 2001
data [54] give northern and north-eastern winds as dominant. Since Inuit have reported
more variable winds [2], readers should be aware that the situation might have changed in
20 years.

In Deception Bay, we suggest that heterogeneous snow depth in 2016 (Figure 3)
might be associated with the remarkable smoothness of the ice that year, as illustrated
by a C-band HH backscattering coefficient of −25 dB (Figure 5) and documented in a
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previous study [31]. Snow accumulation around Moosehead Island in 2017 suggests a
predominance of the along-fjord dominant winds, both north-western and south-eastern).
In contrast, greater snow depth along the north-eastern shore and at the outset of the fjord’s
transverse valley in 2018 is rather consistent with the effect of across-fjord dominant winds.
Indeed, transverse winds may be funnelled by valleys leading into the fjord [55]. We do
not have up-to-date information on dominant winds in Deception Bay; the most recent
observations date back to 1963–1973, more than 40 years ago [28]. In Kangiqsujuaq, snow
depth consistently exhibited a south-eastern gradient (Figure 3). This is consistent with
across-fjord dominant winds reported by NAV Canada in 2001 [54].

4.1.2. Ice Thickness Distribution

None of the cases included enough data to quantify spatial autocorrelation in ice
thickness using Geary’s C. Yet, visual interpretation of the ice thickness distributions
(Figure 4) shows that the ice was generally thicker towards the south-western end of the
study area in Salluit, where the water is more shallow. The ice was also thicker along the
south-western shore in Deception Bay, where the snow is usually thin. In 2017 and 2018,
ice thickness patterns in Deception Bay seemed to mirror those in snow depth, with thicker
snow leading to thin ice and vice versa, similarly to observations made in Van Mijenfjorden
(Svalbard, Norway) [53]. In Kangiqsujuaq, the ice in 2015 was thinner along the middle
of the fjord’s length, i.e., in the deepest part. It was thicker in the northern part of the
broader study area in 2018, despite deep waters. We speculate that ice formation is more
dynamic near the Hudson Strait and potentially included greater ice rafting and other
accumulation processes. Near Pangnirtung in Nunavut, fjord outlets are known to present
strong currents, even preventing solid ice formation [56].

4.2. Ice Thickness vs. C- or X-Band Backscattering
4.2.1. Case A: Thin Snow Cover

Deception Bay 2018 is one of only two cases where the ice thickness hypothesis was
most likely to explain C- or X-band HH backscattering, here through a positive relationship
(Figure 6). It also presented the strongest Bayes factor supporting a non trivial hypothesis
and a linear correlation coefficient of 0.6 between ice thickness and the X-band (Figures S5,
S8 and S9 and in the Supplementary Materials). This case is similar to other Salluit and
Deception Bay cases in 2017 and 2018 in that it featured smaller alpha angles and higher
backscattering (Figure 5) than the smooth ice 2016 case in Deception Bay. Both indicators
suggest surface scattering, which we attribute to slightly rougher ice due to freeze-up
from nilas patches in dynamic conditions, as confirmed for one of the sites in a previous
study [31]. It stands out from the other slightly rough ice cases with its thinner snow cover
of eight cm on average (Table 3).

We speculate that in this case, (i) the brine-wetted snow was not thick enough to
prevent the radar from reaching the ice surface, (ii) small-scale surface roughness allowed
the surface scattering from the ice to make its way back to the radar, (iii) the dominant
backscattering mechanism was surface scattering on saline ice and iv) the top-layer salinity,
surface roughness or both were positively correlated with ice thickness which led to a posi-
tive correlation between the latter and HH backscattering. The Bayes factor associated with
this correlation might also have been inflated by spatial autocorrelation, which we cannot
rule out due to an inconclusive Geary’s C (Figures 3 and 4). Note that the Deception Bay
2017 case also presented opposite snow depth and ice thickness gradients (Figures 3 and 4)
but with thicker snow of 15 cm on average, and no correlation between backscattering and
ice thickness was detected in that case. Our results for this thin snow case are similar to
those of Nakamura et al. [24,25] in that we observed a positive correlation.

4.2.2. Case B: Thick Snow Cover

The three end-of-winter cases from Kangiqsujuaq stand out by their total lack of corre-
lation between either snow depth or ice thickness and the HH backscattering coefficient
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(Figure S6 in the supplementary materials). Similarly, none of the tested hypotheses was
more likely than the null in the Bayesian linear regression analysis (Figure 6). We attribute
this behavior to the deeper snow found in Kangiqsujuaq compared to the other two sites:
22 to 25 cm on average during the study (Table 3). We speculate that in this case (i) the
brine-wetted snow was too thick to allow the radar signal to reach the ice surface, (ii) the
dominant backscattering mechanism was surface scattering on the interface between dry
snow and brine-wetted snow.

4.2.3. Case C: Very Smooth Ice

Deception Bay 2016 is the second of only two cases where the ice thickness hypothesis
was most likely in the Bayesian analysis, and only for the C-band (Figure 6). The relation-
ship is negative, contrary to case A for a thin snow cover. This case stands out due to a
lower backscattering coefficient and a higher alpha angle than all others (Figure 5). The
ice cover was particularly smooth ice due to a thermal freeze-up [31] and its alpha angle
(Figure 5) indicates that volume scattering played a more prominent role that year for the
C-band than in the other cases [39]. We made the same conclusion for the X-band data
in a previous publication [31]. Our observed difference of 5 dB between the two bands
(Figure 5) is identical to reports by Nandan et al. in a similar case where volume scattering
was deemed to be important [23].

In the C-band, the hypothesis for a negative linear relationship with ice thickness
was most likely (Figure 6). In the X-band, however, the null was most likely and the
linear correlation coefficient between snow depth or ice thickness and either frequency’s
HH backscattering coefficient was zero (Figure S4 in the supplementary materials). The
relationship is therefore almost imperceptible and in the opposite direction than in case A
for a thin snow cover over slightly rougher ice. We speculate that (i) the brine-wetted snow
was not thick enough to prevent the radar from reaching the ice surface, (ii) small-scale
surface roughness was too small for the surface scattering from the ice to make its way
back to the radar. Note that what little relationship there is between ice thickness and
backscattering is negative in this case, which differs from previous reports [24,25].

4.2.4. Relationship with Other SAR Parameters

The C-band co-polarization and cross-polarization ratios did not perform significantly
better than the HH band. The strongest linear correlation coefficient we observed was 0.3
between the cross-polarization ratios and the ice thickness in the Salluit 2017 and 2018 cases
(Table S3 in the supplementary materials). This is different from results by Nakamura et al.
at a comparable incidence angle of 37◦ [57]. They reported an improved correlation with
ice thicknesses up to 120 cm for the co-polarization ratio (r-squared = 0.6) compared to the
correlation with the HH and VV backscattering coefficients themselves (r-squared = 0.4
and 0.3). The authors attribute this to ratio sensitivity to the dielectric constant of the top-
layer ice [24], i.e., its brine content, and cancelling out of the small-scale surface roughness
effect. The fact that the co-polarization ratio hides what little correlation there was between
ice thickness and C-band SAR in Deception Bay 2018, with an r-squared of 0.0 compared to
0.3 (Table S3 in the supplementary), suggests that surface roughness was responsible for at
least part of the observed correlation.

4.3. Snow Depth vs. C- or X-Band Backscattering

There are only two cases where the snow thickness hypothesis was most likely to
explain the HH backscattering, both for the C- and X-band: Deception Bay in 2017 and
Salluit in 2018 (Figure 6). However, the associated linear correlation coefficients are very
low, either 0.1 or 0.2 depending on the frequency (Figures S4 and S5 in the supplementary
materials). These cases are similar to a third, Salluit 2017, in terms of average snow
thickness (Table 3), position in the H-alpha plane and median HH C-band backscattering
(Figure 5), and near-zero linear correlation coefficient between the two variables (Figure S4
in the supplementary materials). We were therefore unable to reproduce observations by
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Gill et al. [27] of a moderate positive correlation (r-squared > 0.5) between snow depths
ranging from 5 to 35 cm and C-band HH backscattering at comparable incidence angles of
32◦ to 36◦.

4.4. Interpreting Results from a Bayesian Linear Regression

Despite very low linear correlation coefficients of zero to 0.3 between either thickness
variable and the C-band HH backscattering coefficient (Figures S4 to S6 in the supple-
mentary materials), the Bayesian linear regression analysis gave a non trivial hypothesis
as more likely than the null for half of the eight cases (Figure 6). While these four cases
all presented at least substantial evidence [50] against the null hypothesis (K > 100.5),
the evidence in the Deception Bay 2018 case was decisive (K > 100) both with the C-
and X-band (Figures S8 and S9 in the supplementary materials). In that case, the linear
correlation coefficients with ice thickness were 0.3 and 0.6 (Figure S4 in the supplementary
materials). This illustrates the need to contextualize results from a Bayesian model com-
parison analysis with a familiar indicator such as Pearson’s linear correlation coefficient.
The apparent disparity between the Bayesian and frequentist approaches, for example in
case A, can be traced back to the fact that the Bayesian linear regression model evaluates
the probability that a linear relationship exists considering the data provided. In contrast,
the linear correlation coefficient provides a quantitative assessment of the degree to which
the variables are correlated. The Bayesian hypothesis testing allowed us to identify the
cases where the null hypothesis was more likely than a linear relationship with either
thickness variable. For the other cases, we used it to identify which variable carried the
most information about the backscattering coefficient.

4.5. Perspective for Future Work

Further work is needed to elucidate which of small-scale surface roughness or top-
layer ice salinity is correlated with ice thickness in such a case. The freeze-up process and
resulting small-scale roughness at each measurement location would be useful information
for such a study, and processes such as the impact of snow redistribution on snow and ice
salinity profiles should be taken into account. Surface desalination from snow redistribution
might be different according to ice roughness and sheltering of the study area, and may
differ between landfast and drift ice. Additionnaly, ice formed in an open area more
than 250 km wide in the southern portion of the Sea of Okhotsk might be difficult to
compare with ice formed in sheltered fjords less than 5 km wide, as evidenced by our lower
X- and C-band HH backscattering coefficients. This might explain disparities between
this study on fjord landfast ice and studies by Nakamura et al. on drift ice in the Sea of
Okhotsk [24,25]. Future sampling should be designed to ensure that spatial autocorrelation
may be quantified, for instance using Geary’s C. Grid-like sampling may not be the best
strategy to capture the spatial variability of snow depth and ice thickness. Local experts
can help design a sampling strategy which would cover extremes and may help outline
homogenous areas. Careful treatment of spatial autocorrelation is essential because it can
inflate our confidence in the detection of a correlation between two variables [48,52]. While
none of the polarimetric parameters we explored performed systematically better than
the co-polarized backscattering coefficients, we did not examine the compact polarimetry
parameter developed by Zhang et al. [26]. Following the launch of the RADARSAT
Constellation Mission in 2019, access to RCM data started in 2020 and will continue to
improve. Finally, although the incidence angles used in this study were already steep (35◦

to 38◦), it would be interesting to see if even higher incidence angles could improve our
results. Indeed, Gill et al. [27] saw that the strength of the linear correlation between snow
depth and C-band HH backscattering increased with incidence angle between 26◦–28◦ to
35◦–37◦, and in the Nakamura et al. studies [24,25] reporting a strong correlation between
ice thickness and HH backscattering, the incidence angles were 45◦ and 39◦ for the C- and
X-band, respectively.
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5. Conclusions

In this article, we combined field measurements and satellite SAR data in order to
characterize seasonal snow-covered sea ice from 2015 to 2018 in three Nunavik fjords of
the Hudson Strait.

In cases of landfast and undeformed first-year sea ice, we conclude that the necessary
conditions for detecting a correlation between sea ice thicknesses above 30 cm and SAR HH
backscattering in the C- or X-band are a snow cover thinner than 10 cm and slightly rough
ice formed from dynamic processes. In terms of usability for predictions, the correlations
we observed in these conditions were poor at best for the C- or X-band, respectively, with
r-squared values of 0.2 and 0.6. In cases with snow thicker than 20 cm on average or
with very smooth ice, no correlation could be detected with ice thickness. No correlation
above 0.3 was observed between snow depth and backscattering. The Bayesian linear
regression analysis proved to be useful in categorizing each case according to their most
likely hypothesis out of the ones we tested. Our results differ from previous reports of a
correlation either between ice thickness and the co-polarization ratio in the C-band [25] or
between snow depth and the HH backscattering coefficient in either frequency [27].

Backscattering in the C- and X-bands was either different or similar depending on
the type of ice. Over smooth ice formed from thermal freeze-up, backscattering from
both bands has a significant volume scattering contribution and their HH backscattering
coefficients present a 5 dB difference. Over slightly rougher ice formed from consolidated
nilas patches, surface scattering dominates at both frequencies. Their HH backscattering
coefficients differ by 1 dB or less.

Supplementary Materials: The following are available at https://www.mdpi.com/2072-4292/13/4
/768/s1, Figure S1: Monthly total precipitation measured at Salluit airport, Figure S2: Bathymetry for
Salluit, Deception Bay, and Kangiqsujuaq, Figure S3: Measurement distributions for snow depth and
ice thickness measured in April–May of each season, Figure S4: C-band backscattering HH coefficient
versus snow depth and ice thickness for available cases in Salluit, Figure S5: Same as S4 for Deception
Bay, including X-band data, Figure S6: Same as S4 for Kangiqsujuaq, Figure S7: Marginal probability
distributions for the Hsnow hypothesis parameters in the Salluit 2018 case, Figure S8: Pair-wise
logarithmic Bayes factors for the relationship between the C-band HH backscattering coefficient and
either snow depth, ice thickness, or both, Figure S9: Same as S8 for the X-band in Deception Bay,
Figure S10: Mean and standard deviation of the parameters’ marginal probability distributions for
Hsnow applied to C-band data, Figure S11: Same as S10 for Hice, Figure S12: Same as S10 for Hboth,
Figure S13: Same as S10 for Hsnow, Hice, and Hboth, applied to X-band data; Table S1: Fieldwork dates
in Salluit and Kangiqsujuaq, RADARSAT-2 acquisition dates, and the difference between the two,
Table S2: Fieldwork dates in Deception Bay, RADARSAT-2 and TerraSAR-X acquisition dates, and
the difference between the two, Table S3: Linear correlation coefficient (r-squared) between C-band
SAR parameter values and April–May snow depth and ice thickness.
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for each case, and (iii) shapefiles of snow depth and ice thickness measurements for each case [58].
The code used to process the RADARSAT-2 images using ESA’s SNAP is available at https://gitlab.
com/sdufourbeausejour/java-snap, accessed on 12 February 2021 [35]. The code used to compute
SAR parameter median from AOIs is available at https://github.com/sdufourbeausejour/tiffstats,
accessed on 12 February 2021 [45]. The code used to extract SAR parameter values at shapefile feature
locations is available at https://github.com/sdufourbeausejour/tiff_at_shp, accessed on 12 February
2021 [46].
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