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identifying the features of various phenomena (Roess-
ner et al. 2001; Dell’Acqua et al. 2004). However, new 
processing tools and methods are needed to obtain re-
liable and accurate geospatial information.

Due to variations in spatial resolution, informa-
tion extraction from hyperspectral data involves sev-
eral strategies. In the case of classic pixel-based clas-
sification, there are two main categories of approaches: 
whole-pixel and sub-pixel approaches. Blaschke (2010) 
introduced three cases concerning the relative size of 
objects and spatial resolution. He represent the tran-
sition from sub-pixel methods to pixel-based and 
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Abstract. Object-based image analysis methods have been developed recently. They have since become a 
very active research topic in the remote sensing community. This is mainly because the researchers have 
begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral 
content of data. To evaluate the applicability of object-based image analysis methods for land-cover informa-
tion extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, 
six supervised classification methods were selected from pixel-based category, including the maximum like-
lihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral 
angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several 
features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, 
and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extrac-
tion methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. 
The effective feature number (EFN) was then obtained. Image objects were thereafter created using the frac-
tal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several 
experiments have been carried out to find the best segmentation parameters. The classification accuracy of 
these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia 
University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an 
urban area in Italy. The results reveal that when using any combination of feature extraction and classifica-
tion methods, the performance of object-based methods was better than pixel-based ones. Furthermore the 
statistical analysis of results shows that on average, there is almost an 8 percent improvement in classifica-
tion accuracy when we use the object-based methods.
Keywords: hyperspectral, pixel-based, object-based, feature extraction, segmentation.

Introduction

Rich spectral content of hyperspectral data has brought 
about the new possibilities as well as new challenges 
for image analysis and information extraction. Hy-
perspectral data can be used to detect and identify 
different terrestrial features such as minerals (Kruse 
et al. 2003), urban features (Roessner et al. 2001), and 
land-covers (Rogan, Chen 2004). In addition to pro-
viding spectral information, hyperspectral imagery 
sometimes provides a high spatial resolution (e.g., with 
respect to airborne data). Both spectral and spatial in-
formation are important for detecting, classifying, and 
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object-based methods by increasing the spatial resolu-
tion of the sensors (Blaschke 2010).

The primary methods used for the classification of 
remote sensing data were based on pattern recognition 
algorithms. These algorithms were originally devel-
oped by experts and incorporate statistical bases, such 
as both the Bayes (Bischof et al. 1992) and Maximum 
Likelihood (Paola, Schowengerdt 1995) algorithms. 
Moreover, these algorithms are used for pixel-based 
classification. Remote sensing experts tried to develop 
dedicated methods such as SAM (Kruse et al. 1993), 
or non-statistic methods such as SVM (Melgani, Bruz-
zone 2004) and Synergethics (Müller et al. 2013) based 
theories in pixel-based classification.

Acquiring high resolution imagery in urban areas 
causes to obtain a sufficient number of neighboring 
pixels belonging to same land-cover class. High reso-
lution imagery creates a spatial correlation between 
pixels. Consequently, classification methods need to 
be capable of assessing both spectral and spatial in-
formation in the image. In addition to the classic 
methods (Kettig, Landgrebe 1976), new classification 
methods have recently been proposed for this purpose 
(Dell’Acqua et  al. 2004; Plaza 2008; Tarabalka et  al. 
2009, 2010; Salehi et al. 2012). Two main challenges 
that arise when using these methods are as follows 
(Tarabalka 2010):

− Extracting the spatial features from an image.
− Combining the spectral and spatial informa-

tion within the classification process.
Different methods have been developed with the 

aim of addressing these problems. Among these meth-
ods, the Extraction and Classification of Homogeneous 
Objects (ECHO) (Kettig, Landgrebe 1976) was the fo-
cus of one of the first research studies. Based on this 
study, various methods have been developed and pro-
posed. The central idea behind these methods is that 
neighboring pixels probably belong to the same land-
cover class (jackson, Landgrebe 2002; Dell’Acqua et al. 
2004). Most common concepts that may help achieve 
this goal are as follows: the morphological profile and 
derivative morphological profile (Pesaresi, Benedikts-
son 2001; Palmason et al. 2003), morphological opera-
tors (Soille 2003), the extended morphological profile 
(Benediktsson et al. 2005) composite kernels (Camps-
Valls et al. 2006), and image texture (Tsai et al. 2006).

The common point of pixel-based methods is the 
way they extract and use the spatial information of an 
image scene. These methods add the spatial informa-
tion extracted from a predefined neighboring window 
to the feature vector of the central pixel. Despite the 

computational complexity of these methods, they can-
not take into account every spatial structure, because 
of simplifications they use in defining spatial struc-
tures. It is worth noting that the first step in overcom-
ing this problem began by asking “what’s wrong with 
pixels?”, by Thomas Blaschke (Blaschke, Stroble 2001). 
He and his co-workers then proposed the concept of 
using image objects made by a homogenous group of 
neighboring pixels to add contextual information of 
high resolution remote sensing images in data process-
ing.

Object-Based Image Analysis (OBIA) methods 
use the neighboring pixels to create image objects. Ob-
jects are usually made using different image segmenta-
tion methods. Image segmentation can be defined as 
the process of dividing an image into homogeneous 
regions. The result of blending two neighboring seg-
ments is that the new segment is not homogenous 
any more. Many different segmentation methods have 
been proposed for remote sensing imagery (Meinel, 
Neubert 2004). There are also several methods that 
have been especially developed for hyperspectral data 
(Mercier et al. 2003; Erturk, A., Erturk, S. 2006; Gorre-
ta et al. 2009). These methods try to create objects that 
fit the terrestrial features and are recognizable by the 
naked eyes. After the completion of the object creation 
process, instead of single pixels, image objects are used 
as a basic processing unit for further image processing 
procedures (Benz et al. 2004).

Using the object-based concepts in classification 
has advantages in comparison to the classic pixel-
based methods. The main benefit is a decrease in the 
computational cost in the classification process. This 
is because the classification process evaluates several 
pixels at once by assuming that the neighboring pixels 
belong to one land-cover class (yu et al. 2006; Baraldi, 
Boschetti 2012). Also salt and pepper effect is omit-
ted from the final result because the neighboring pixels 
are grouped into a single image object, and the local 
information is evaluated (yu et al. 2006). In addition 
to these primary benefits, using OBIA improves the ac-
curacy of classification. Using the topology of and the 
relation among image objects helps develop an object 
oriented image analysis (OOIA), which uses an OBIA 
procedure iteratively for a better understanding of im-
age objects (Baraldi, Boschetti 2012).

Most remote sensing data processing methods 
can take advantage of object-based image analysis. 
Collecting reliable information in natural disasters 
(Gitas et al. 2004), producing and updating land cover 
maps (Whiteside, Ahmad 2005; Gholoobi et al. 2010; 
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Gomes, Marçal 2003; Kruse 2005; Myint et al. 2011), 
and change detection (Bontemps et  al. 2008; Walter 
2004) are some of the application required, particu-
larly in urban studies. Moreover, in recent years new 
features, such as ontology (Arvor et al. 2013) and agent 
recognition systems (Tabib Mahmoudi et  al. 2013) 
have been added to the object-based image analysis, 
resulting in an improved capacity for identifying im-
age objects.

Despite these improvements, not enough research 
has been done on the application of the OBIA in hy-
perspectral data analysis. Xie et  al. uses the object-
based image analysis to classify objects created from 
hyperspectral and digital surface model data using a 
binary encoding method (Xie et al. 2009). Tarabalka 
et al. created the image objects by joining the pixels 
that belong to the same cluster in a local neighbor-
hood. These pixels were labeled based on the major-
ity voting in each image object using pixel-based SVM 
classification. Although, this method is similar to 
object-based methods, it is considered, and called, a 
spectral-spatial method (Tarabalka et al. 2009). Zhang 
and Huang used SVM to classify the image objects cre-
ated using extracted features from hyperspectral data 
(Zhang, Huang 2010). Zhang and Xie also compared 
neural network pixel-based classification with object-
based texture features added to the neural network 
in vegetation classification; they conclude that object 
texture features can improve the vegetation mapping 
accuracy (Zhang, Xie 2012).

Due to the diversity of the sensor’s spatial resolu-
tion and the size of the desired objects, the optimum 
method for various applications can be selected among 
sub-pixel, pixel-based or object-based methods. In ad-
dition, because of the variety of feature extraction and 
classification methods in hyperspectral data analysis, a 
comprehensive study on different ways to choose the 

classifier and feature extraction methods is conducted 
in this paper. To this end, two distinct frameworks for 
pixel-based and object-based classifiers are designed. 
The processing begins with feature extraction. The fea-
tures are then classified using a pixel-based method. 
The number of features that yield the best accuracy are 
selected as an EFN and used in the object-based classi-
fication step. Image objects are created using the Frac-
tal Net Evolution Algorithm (FNEA) (Baatz, Schäpe 
2000) segmentation algorithm.

In this paper we intend to comprehensively com-
pare object-based and pixel-based classifications of ex-
tracted features from hyperspectral data. In addition, 
the FNEA segmentation algorithm is used to create the 
image objects. We also herein evaluate the effect of dif-
ferent parameter values in these algorithms.

The rest of this paper is organized as follows. An 
overall view of methodology and the dataset used in 
this paper are introduced in the next section. Section 2 
contains the theoretical bases of methods used. Sec-
tion 3 presents the result of the experiments and lastly, 
in last section conclusions will be presented, preceded 
by a discussion of the results.

1. Material and methods

1.1. Dataset

The objective of this study was to evaluate the ef-
ficiency of object-based image analysis for hyper-
spectral data. For this purpose a benchmark dataset 
collected by Reflective Optics System Imaging Spec-
trometer (ROSIS) over the campus of University of 
Pavia, Italy was used. As depicted in Figure 1a, the 
data size was 610×340 pixels with spatial resolution 
of 1.3 m per pixel. The original data was gathered 
in 115 spectral bands ranging from 0.43 to 0.86 µm 
in the electromagnetic spectrum. Twelve bands with 
low signal to noise ratio were omitted from the orig-
inal dataset and the remaining bands (specifically, 
103 of them) were used in the experiments. This 
dataset also contained ground truth data in 9 land 
cover classes. 42776 ground truth pixels were used 
as test samples (Fig. 1b) and 3921 pixels were used 
as train samples (Fig. 1c). 

1.2. Methodology

An important issue and challenge in hyperspectral 
imagery is the problem of data redundancy. This 
problem is mainly due to the high correlation among 
the adjacent bands. The correlated bands extend the 
feature vector to a high dimensional space and make 

Fig. 1. (a) False color composite of ROSIS dataset.  
(b) Test sample. (c) Training sample

(a) (b) (c)
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the estimation of statistical parameters difficult. This 
problem is called the Hughes phenomenon (Hughes 
1968). The band reduction (or selection) and feature 
extractions are two possible solutions to overcome the 
curse of dimensionality problem (Landgrebe 2005). 
Both these methods have their own advantages and 
limitations. In this paper, we use the feature extrac-
tion methods that can be seen as a projection of the 
high dimensional data into a lower dimension feature 
space. Feature extraction provides data with a lower 
spectral dimension, and as a result, the subsequent 
classification requires less computation and less train-
ing samples.

In addition, a feature extraction can be conducted 
using two main strategies of supervised and unsuper-
vised methods. In supervised methods, sufficient and 
high quality training data is needed to calculate the 
features with the best separation within the considered 
classes. In contrast, the unsupervised methods do not 
need a priori information about the land-cover classes. 
These methods create features by projecting the data 
into a new space with lower dimensionality such that 
most of the information content of the original data is 
preserved.

In this paper, the following well-known su-
pervised feature extraction methods were used: the 
Discriminant Analysis Feature Extraction (DAFE), 
Decision Boundary Feature Extraction (DBFE), and 
Nonparametric Weighted Feature Extraction (NWFE). 
In addition, four unsupervised feature extraction 

methods were used: the Principal Component Analy-
sis (PCA), Independent Component Analysis (ICA), 
Minimum Noise Fraction (MNF) and Spectral Band 
Mean (SBM).

Moreover, two classification categories of para-
metric and linear methods were used in the experi-
ments. The parametric methods used were as follows: 
ML, FLL and SID. The linear methods used were SVM, 
SAM and BE. These methods were used for pixel and 
object-based approaches.

As depicted in Figure 2, the pixel-based approach 
begins with extracting features from the original da-
taset. Features are then used as input in the classifica-
tion step. Because feature extraction methods do not 
normally obtain the optimum number of features, it 
is usually unclear as to how many features should be 
employed. In the experiments, we began using pixel-
based classification with 3 features. Over time we add-
ed up to 20 features. As a result, regardless of which 
combination of feature and classifier we used, we ob-
tained the number of features that yielded the best 
classification accuracy. This number of features can be 
interpreted as an EFN.

To perform the object-based classification as the 
workflow of Figure 3, the first step is creating the im-
age objects. The optimum features calculated in the 
pixel-based step, are used as input data for the segmen-
tation algorithm to create the image objects. The result 
was that the object-based approach outperformed the 
pixel-based one. Consequently, using the object-based 

Fig. 2. Workflow of pixel-based classification framework

Fig. 3. Workflow of object-based classification framework
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methods improves the result of hyperspectral data 
classification. The FNEA segmentation algorithm is 
then used to create image objects. This algorithm uses 
the scale parameters and the weight of using shape in-
formation against the spectral information, beside the 
number of input features to segment the image. In or-
der to avoid under-segmentation, an empirical method 
is used to find the best parameters. The mathematical 
detail of the algorithms will be presented in the next 
section.

After the image objects have been created, the 
feature vector of each object is then established as the 
mean feature vector of pixels forming the object. This 
framework leads to results that enable a comparison 
between the pixel and object-based approaches.

2. Theoretical background

This section contains a description of the methods 
and algorithms used in the experiments. Three main 
groups of algorithms were used here. These algorithms 
were the feature extraction, classification, and segmen-
tation algorithms.

2.1. Feature extraction

Reducing the dimension of data is a critical step in hy-
perspectral data processing. It can prevent the Hughes 
phenomenon (Landgrebe 2005) and also improve the 
quality of further processing (Li 2004) (e.g., classifica-
tion, target detection, and end member extraction). 
Two main approaches used in dimension reduction 
are band selection and feature extraction.

The feature or band selection approach try to find 
the subset of features that will lead to better results 
than the original features. Selection of the best features 
in the hyperspectral data has usually caused an NP-
hard problem. This is due to an excessive number of 
selections for m subset bands form n total bands. Fea-
ture extraction algorithms project data from the origi-
nal spectral space into a new feature space using either 
linear or non-linear mapping of original features. In 
this paper, our objective is to evaluate and study the 
various feature extraction approaches.

Based on the either using a priori knowledge or 
not, two categories of feature extraction algorithms 
have been presented in the literature, called super-
vised and unsupervised. In unsupervised algorithms, 
the new feature space is defined such that the space 
axis orientation follows the scattered direction of data 
in original space. In this way, features are representa-
tive of most variations in the data.

The unsupervised feature extractions mainly take 
into account the inherent data scatter. In contrast, the 
supervised feature extraction methods take into ac-
count the desired land-cover classes in the dataset to 
extract features. Consequently, the features extracted 
by this approach discriminate well between the classes 
of interest.

Four unsupervised algorithms are used in this 
experiment, namely, PCA, ICA, MNF and SBM. PCA 
uses the principal components of data to produce un-
correlated features and segregate noise from data. The 
PCA moves the origin of feature space to the data 
mean and rotates the axes such that the variance is 
maximized (Richards 1999). The ICA transforms the 
data into new space, in which the components are 
statistically independent. This algorithm presumes 
the non-Gaussian distribution over the independent 
sources and the dataset (Hyvärinen, Oja 2000). The 
MNF aims to detect the intrinsic dimensionality of 
the data and omit the noises. This algorithm is a lin-
ear transformation comprised of two separate prin-
cipal component analysis. First PCA is conducted on 
noisy data to create data with white noise. And final 
features are produced using PCA transformation with 
the noise-free features of the previous step (Green 
et al. 1988). The last unsupervised feature extraction 
method that had a simple set of computations was the 
concept is SBM. This method also used in (Tarabalka 
et al. 2009), tries to use the neighbor band correlation 
to extract the features. In this method, the mean value 
of some spectral features is used as a representative of 
the features.

In addition, three supervised feature extraction al-
gorithms were used in the experiments: DAFE, DBFE 
and NWFE. DAFE uses within class and between 
classes scatter matrices to maximize the separability of 
subspace compared to the original space defined with 
all features. This procedure happens when the maximi-
zation of the trace ratio of these matrices takes place 
(Landgrebe 2005). DBFE aims to omit discriminantly 
redundant features while retaining discriminantly in-
formative features. Redundant features are perpendic-
ular to the normal of between class decision boundar-
ies, whereas the informative features are parallel to the 
decision boundary, at least at one point on the bound-
ary (Lee, Landgrebe 1993). The last supervised feature 
extraction method is the NWFE. This algorithm is an 
extension of the Nonparametric Discriminant Analy-
sis (NDA) method, which proposes a non-parametric 
approach for resolving the problem of a parametric es-
timation of within class and between classes scatters 
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matrices, similar to DAFE. In addition, the NWFE al-
gorithm calculates the weight of contributing samples 
in inter and intra class matrices based on the distance 
between the sample and the mean of the class (Kuo, 
Landgrebe 2004).

2.2. Land-cover classification

Classification is the primary algorithm used to pro-
duce land-cover maps from remote sensing data. Un-
supervised clustering and supervised classification 
algorithms are the main methods for this purpose. Un-
supervised methods are able to separate the land-cover 
classes efficiently: however, they do not provide any 
information about the type of class. Supervised algo-
rithms operate based on the machine learning theory. 
These algorithms need the training data and a train-
ing phase in advance. After these initial steps, they can 
separate and label any land-cover classes. 

Six supervised algorithms were used in these ex-
periments: three parametric and three linear ones. The 
parametric algorithms are ML, FLL, and SID. These 
algorithms use the estimated statistical parameters of 
the land-cover classes based on training samples. The 
trained classifier then enables us to classify any previ-
ously unknown dataset.

ML, a parametric algorithm, groups the pixels 
with the land-cover classes to which they probably 
belongs. The probability is calculated by presuming 
normal distribution for the classes (Richards 1999). 
The FLL algorithm acts similarly to ML; however, it 
assumes a multidimensional normal distribution of 
variance-covariance of the whole data to generate the 
decision boundaries to classify data. The purpose of 
this assumption is to generate the decision boundar-
ies within which the data should be classified. This 
method does not use internal class variations in clas-
sification (Landgrebe 2005). The SID algorithm uses 
the divergence distance measure between the pixel and 
class mean vector to determine to which class the pixel 
belongs. This determination about the class of pixel is 
made based on the measured minimum distance (Du 
et al. 2004).

Linear algorithms use heuristic measures, which 
are characterized by their use of a pixel feature vec-
tor to classify the data. For example, the BE method 
converts the feature vector of pixels and class spectral 
representatives into a binary code, based on a pre-
defined threshold. Consequently, the pixel belongs 
to the class whose code best matches the pixel code 
(Mazer et  al. 1988). The SAM method uses angular 
measure of similarity for classification. In this method, 

the angular distance between the pixels feature vector 
and the reference feature vector of class is calculated 
in n-D feature space. Using the angular measure, the 
effect of illumination, as well as albedo effects, can be 
minimized (Kruse et al. 1993). The SVM method max-
imizes the margin between classes by defining optimal 
hyperplanes. This method is a binary classifier; conse-
quently, in multi-class problems several binary SVMs 
need to be integrated (Mercier, Lennon 2003).

2.3. Image segmentation

Image objects are defined as the homogeneous regions 
in an image that belongs to the same terrain features, 
or i.e., the same land-cover class. Image segmentation 
algorithms are used to create the image objects. the 
FNEA algorithm (Baatz, Schäpe 2000), a well-known 
segmentation algorithm used in the OBIA, was used 
in this experiment.

FNEA uses a region growing procedure in seg-
mentation. The algorithm starts with some pixels as 
seed points all over the image plane as segment primi-
tives and in a repetitive cycle, the neighboring objects 
are merged to create the bigger image objects. The 
heterogeneity measure, computed using the following 
equation, is used as a criterion to decide either two 
neighboring objects merge or not. This criterion cal-
culates the heterogeneity change during the merging of 
two neighboring objects spectrally and spatially:

 ( )1spectral spatialh wh w h= + − , (1)

where parameter w tunes the contribution weight 
of spectralh  and spatialh . The spectral component 

spectralh  is calculated as follows:
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Here B denotes the number of spectral bands and 
Wb is the weight parameter of the bands. The N values 
are the number of pixels in the merged object as well 
as neighboring objects. σ is the standard deviation of 
the feature vector of pixels contained in the objects. 
The spatial component of the heterogeneity measure, 

spatialh , is calculated according to the weighted sum 
of the smoothness and compactness criteria as follows:

   ( )1spatial compact compact compact smoothh w h w h= + −  (3)

In this equation compactw  defines the weight val-
ue of compactness heterogeneity measure, compacth , 
against the smoothness, smoothh . These measures are 
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dependent on the compactness and smoothness of 
objects before and after merging. More details about 
calculating these measures can be found in the fol-
lowing equations:

1 2
1 2
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merge obj obj
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New parameters used in these equations are l and 
r both of which respectively, are perimeters of the both 
objects and the rectangle surrounding the image object.

In the segmentation cycle, we need to be able to 
calculate the heterogeneity measures in any iteration 
for any neighboring candidate objects that are to be 
merged. The decision to merge the objects is based on a 
comparison of this value with the scale parameter. The 
scale parameter is a criterion introduced into the algo-
rithm by the user for the purpose of defining the maxi-
mum allowable change in heterogeneity while merging 
two objects. This criterion determines the size of the fi-
nal objects, which is very important in the OBIA.

3. Experimental results

The experiments were conducted on the ROSIS Pa-
via campus dataset. This dataset was collected by the 
ROSIS sensor over the campus area in the University 
of Pavia, northern Italy on july 2002. The dataset cov-
ers a range of 0.43 to 0.86 µm on the EM spectrum, 
which consists of both the visible and the infrared EM 
spectrum. 103 spectral bands out of 115 spectral bands 
were selected for further processing, considering the 
Signal-to-Noise ratio and water absorption bands. 
Moreover, there are ground truth data in 9 different 
urban classes to train the classifier and evaluate the 
results of classification. The ground truth data are di-
vided into 3921 train pixels and 42776 test samples, as 
depicted in Figure 1.

As already mentioned, this study intends to eval-
uate the performance of the pixel-based and object-
based classification of hyperspectral imagery. The 
overall accuracy and the Kappa coefficient described 
in (Congalton 1991) were used to evaluate the results 
and compare the different methodologies. 

The proposed methodology starts with pixel-
based classification. In this step, features that lead to 
the best overall accuracy qualified as the EFN. This is 
the case for any combination of the feature extraction-
classifiers. EFN contains the features that successfully 
discriminate among the various land-cover classes. 
These features were used in the next step to create im-
age objects and conduct the object-based classification 
process. The details of the results are presented in the 
following section.

3.1. Pixel-based classification

The feature vector of a pixel was used in this step to 
group a given individual pixel in a given land-cover 
class. Seven feature extraction methods in addition to 
six supervised classification algorithms were used un-
der 42 different experimental conditions. Every experi-
ment begins with three features as the input for clas-
sification. The features were then added one by one.

An important purpose of this step was to find 
the EFN in every experiment. The EFN was found 
by using the feature extraction-classifier. As depicted 
in Figure  4, these experiments reveal that when the 
number of input features increases, the OA changes 
in two ways. In the first case, when using the reason-
able features number, the OA reached its maximum 
value. By adding more features, it began to decrease 
and undulate (Fig. 4a). In the second case, adding in-
put features led to an increase in the OA value. As the 

Fig. 4. Change in overall accuracy with increase in input 
feature number for PCA-FLL (a) and DBFE-SAM (b) feature 

extraction-classifier ensemble (effective feature number in 
each case is marked by circle)
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OA increased, its rate was negligible compared to the 
computation load it adds. In such a case the process 
held 20 input features, which was an effective feature 
number (e.g., Fig. 4b).

Using a similar procedure, the EFN, the cor-
responding OA, and the Kappa coefficient, achieved 
were calculated for each experimental test and pre-
sented in Table 1. The results of classifying the origi-
nal features are also presented in this table. As can be 
seen, the SVM classifier yields the best accuracy when 
dealing with original features. This reveals the capac-
ity of this classifier to successfully discriminate among 
the various land-cover classes using high dimensional 
data. In this case, the ML and FLL classifiers also pro-
vided acceptable results. This shows that statistical al-
gorithms can work well when proper training data are 
available in advance.

The classification accuracy of other features show 
that in 30 out of 42 experimental tests, feature extrac-
tion can potentially either improve the accuracy of 
final results or yield the same result as the original 
features, but with using lower input features. Deterio-
rations are usually occur for the BE and SID classifiers. 
This is because of the adjacency of land-cover classes 
in feature space and the inability of these algorithms to 
discriminate among these classes.

3.2. Object-based classification

Image objects are the main processing unit in the 
OBIA; accordingly the first step in object-based image 
classification is creating image objects. As previously 
described, the FNEA segmentation algorithm is used 
to this end. The FNEA algorithm needs some param-
eters to be tuned prior to the run. These parameters 
are the scale parameter and the weight parameters, as 
discussed in the previous section. Different settings 
of these parameters change the shape and size of the 
created image objects. Setting the parameters of seg-
mentation algorithms is an unresolved problem in 
performing image segmentation. This is mostly due to 
the lack of a standard criterion for measuring the ad-
aptation of the segments to the terrain features (Zhang 
et al. 2008). For example, the evolutionary algorithms 
such as genetic algorithm (GA), are used in segmenta-
tion parameter optimization (Zhang et al. 2012). This 
methodology needs two criteria to assess the homoge-
neity of an image segment, one for segmentation and 
one to calculate the cost function. As none of these cri-
teria are standard, different functions can be used and 
consequently different results may be obtained.

These problems led researchers to use a trial and 
error approach, in addition to visually inspecting the 
created image objects. In our experiments, we designed 
a mechanism for using a trial and error approach in 
order to create image objects that yield the best classi-
fication accuracy. To this end, the image segmentation 
was checked visually to prevent under-segmentation, 
and change the scale parameter, the weight of spectral 
versus spatial heterogeneity and the number of input 
features. In each case the parameterization that yields 
the best classification accuracy is stored as the result of 
an object-based classification.

The results of object-based classification are de-
picted in Table 2. Result of object-based classification 
experiments. It should be noted that both the OA and 
Kappa coefficient in the table correspond to the best 
parameterization of the FNEA algorithm and yielded 
the highest values during the experiments. Moreover, 
the number of input features was limited to the effec-
tive feature number, obtained in the previous step.

Table 1. Results of pixel-based classification experiments

Classifier

ML FLL SID SVM BE SAM

Fe
at

ur
e

Origi nal  
Fea tures

No. of 
Feature 103 103 103 103 103 103

OA 68.4 78.6 48.8 78.6 54.1 57.2

Kappa 0.6 0.73 0.38 0.74 0.4 0.46

SBM

EFN 10 10 10 10 10 10

OA 78.8 74.5 57 70.7 20.8 56.6

Kappa 0.72 0.66 0.45 0.62 0.14 0.45

ICA

EFN 20 19 17 17 20 19

OA 62.1 58.4 31.7 0.62 21.8 53.2

Kappa 0.54 0.49 0.22 0.54 0.11 0.43

PCA

EFN 10 9 3 9 8 9

OA 79.7 74.4 28.7 80.4 41.7 50.2

Kappa 0.73 0.66 0.14 0.75 0.33 0.41

MNF

EFN 10 9 10 9 7 10

OA 82.1 69 43.1 80.8 57.2 64

Kappa 0.77 0.62 0.34 0.75 0.46 0.56

DAFE

EFN 6 6 7 5 4 7

OA 74.6 70.7 51.4 78.2 66.7 69.4

Kappa 0.68 0.63 0.4 0.72 0.54 0.61

DBFE

EFN 8 20 18 16 19 20

OA 74.1 68.1 69.6 78.3 56.9 65.4

Kappa 0.68 0.6 0.6 0.73 0.45 0.56

NWFE

EFN 20 10 9 12 15 8

OA 82.2 74.8 41.2 78.5 61.1 61.5

Kappa 0.77 0.67 0.3 0.73 0.49 0.52
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3.3. Comparing results

The performed experiments provide a framework for 
comparing the pixel-based and object-based classi-
fication results of six classification and seven feature 
extraction algorithms. Using diagrams depicted in 
Figure 5, a comprehensive comparison of the results 
is possible. The first point pertains to the overall per-
formance of both the ML and SVM classifiers. These 
classifiers provide better results for each feature than 
other classifiers. Furthermore it is evident that in all 
cases, using an object-based paradigm improves the 
accuracy of classification. The difference is in the de-
gree of improvement, which in some cases is signifi-
cant (e.g. when using the ICA features and the SVM 
classifier), whereas in others it is negligible (e.g., when 
using PCA features and the SAM classifier). The oc-
currence of this phenomenon is related to the perfor-
mance of feature extraction-classifier combinations. 
For example, SAM, BE, and SID classifiers use a refer-
ence feature vector as a training sample. The reference 
feature vector represents the average behavior of pixels 
belonging to the same land-cover class. Moreover, the 
signatures of image objects represent the mean values 
of all pixels within the image objects. Using the mean 
feature vector in this way may cause a change in land-
cover separability.

Fig. 5. The overall accuracies of pixel-based vs. object-based classifications

Table 2. Result of object-based classification experiments

ML FLL
Classifier

SID SVM BE SAM

Fe
at

ur
es

SB
M

No. of features 10 10 10 10 10 10
OA 80.6 78.7 61.5 77.5 26 61.4

Kappa 0.75 71.6 0.5 0.71 0.17 50.6

IC
A

No. of features 20 19 17 17 20 19
OA 75.5 72.6 55.3 90.3 51.1 77.3

Kappa 0.69 0.66 0.47 0.87 0.41 0.71

PC
A

No. of features 10 9 3 9 8 9
OA 89.4 77.4 29 83.1 43.4 50.9

Kappa 0.86 0.7 0.15 0.78 0.33 0.42

M
N

F

No. of features 10 9 10 9 7 10
OA 95 75.4 44.1 91 61.1 68

Kappa 0.93 0.69 0.35 0.88 0.51 0.61

D
A

FE

No. of features 6 6 7 5 4 7
OA 83.3 78.1 63.5 91.6 70.8 83.9

Kappa 0.79 0.72 0.54 0.89 0.59 0.79

D
BF

E

No. of features 8 20 18 16 19 20
OA 91.6 74.6 72.2 89.3 60.6 69.5

Kappa 0.9 0.68 0.63 0.86 0.49 0.61

N
W

FE

No. of features 20 10 9 12 15 8
OA 92.2 78.7 42.5 82 67.1 62.5

Kappa 0.9 0.72 0.31 0.77 0.56 0.53
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In addition, for the purpose of comparing the 
performance of feature extraction algorithms and 
classifiers, the following results were calculated: the 
mean overall accuracy of any classifier using all fea-
ture extraction algorithms, and the mean overall ac-
curacy of any feature extraction algorithm using all 
classifiers. The results are displayed in Table 3 and 
Table 4. It can be seen that the ML and SVM clas-
sifiers have the best performance with respect to 
both pixel-based and object-based paradigms. This 
demonstrates the strength of the ML classifier when 
there is proper training data and the SVM’s capacity 
to discriminate among the land-cover classes. Aside 
from these two classifiers, FLL, SAM, BE, and SID 
performs best, respectively.

Among feature extraction algorithms, the DBFE 
and DAFE algorithms have the best average overall ac-
curacy in both pixel-based and object-based methods. 
The performance of other methods differs from that 
of these two methods. When using the pixel-based 
NWFE, the MNF, SBM, PCA, and ICA respectively 
create better results. Also in object-based method 
MNF, NWFE, ICA, SBM and PCA had better perfor-
mance respectively. This reveals a difference in capa-
bilities regarding discriminating terrain objects when 
using the different feature extraction algorithms.

Lastly, the comparison of the pixel and object-
based results reveals that the object-based method 
can improve the overall accuracy of high resolution 
hyperspectral data classification by an average rate 
of about 8%.

Table 3. Mean performance of feature extraction  
algorithms with all classifiers

  Mean OA

Feature 
extraction 
algorithms

SBM
Pixel-based 59.7

Object-based 64.3

ICA
Pixel-based 48.5

Object-based 70.4

PCA
Pixel-based 59.2

Object-based 62.2

MNF
Pixel-based 66

Object-based 72.4

DAFE
Pixel-based 68.5

Object-based 78.5

DBFE
Pixel-based 68.7

Object-based 76.3

NWFE
Pixel-based 66.6

Object-based 70.8

In addition to the superior quantitative analysis of 
object-based methods compared to pixel-based ones, 
the visual assessment of the final classification results 
also show some positive results yielded by the object-
based method. Figure 6 presents two examples of the 

Fig. 6. Visual comparison of pixel and object-based 
classification of MNF features

SAM classifier
Pixel-based
OA = 64%

SAM classifier
Object-based

OA = 68%

ML classifier
Pixel-based
OA = 82.1%

ML classifier
Object-based

OA = 95%

Table 4. Mean performance of classifiers with feature 
extraction algorithms

  Mean OA

Classifiers

ML
Pixel-based 72.6

Object-based 86.8

FLL
Pixel-based 70

Object-based 76.5

SID
Pixel-based 46.1

Object-based 52.6

SVM
Pixel-based 74.5

Object-based 86.4

BE
Pixel-based 46.6

Object-based 54.3

SAM
Pixel-based 61.3

Object-based 67.6
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final classification results obtained by the MNF fea-
tures using the ML and SAM classifiers. It is evident 
that using the OBIA can improve the visual quality of 
the final land-cover maps by omitting salt and pepper 
noises and reducing the post-processing analysis to 
produce the final map.

Conclusions

In this paper, we tried to demonstrate the efficacy of 
the OBIA in hyperspectral image analysis. To this end, 
we evaluated different classifiers and feature extraction 
algorithms that are commonly discussed in the litera-
ture. Experiments were conducted using both tradi-
tional pixel-based and the new object-based classifica-
tion methods. A framework for comparing these two 
methods was designed.

The results revealed that the DAFE, DBFE, and 
MNF feature extraction algorithms attain better re-
sults, than other methods, even though the ML and 
SVM classifiers produced appropriate results in both 
cases. In addition, classification results for both the 
classifiers and the feature extraction algorithms show 
that object-based methods yielded more efficient re-
sults compared to pixel-based methods. The mean 
increase rate in the OA was approximately about 4.6, 
21.9, 3, 6.4, 10, 7.6, and 4.2 percent for the SBM, ICA, 
PCA, MNF, DAFE, DBFE, and NWFE features, respec-
tively. Concerning the ML, FLL, SID, SVM, BE, and 
SAM classifiers, the increase rates was 14.2, 6.5, 6.5, 
11.9, 7.7, and 6.3 respectively. Notice that in all cases, 
there was an increase in the efficiency of the classifica-
tion process. The difference in rates is largely due to 
the numerical calculations in classifiers and feature 
extraction algorithms, and the effect of using the mean 
feature value of image objects. It is worth noting that, 
in addition to providing numerical superiority, using 
the OBIA omits the salt and pepper noise from the fi-
nal classification map and reduces the amount of post-
processing.

In conclusion, the superiority of the OBIA meth-
od in hyperspectral imagery reveals that the capabili-
ties of these methods can be tested using other hyper-
spectral image analysis tasks e.g., target detection and 
end-member extraction. Furthermore, it seems that 
the final results of any application of the OBIA depend 
on the quality of the created image objects. Due to a 
lack of automatic segmentation algorithms, and their 
dependency on tuning parameters, it is possible to 
conduct fruitful research on this topic.
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