9 research outputs found

    Genetic diversity and environmental structuring of fungal and algal symbionts in the lichen Umbilicaria pustulata

    No full text
    The existence of all living organisms depends on their multidimensional adjustment to the conditions of the environment in which they live. Organisms must constantly deal with not only abiotic stress factors (such as water availability or extreme temperatures), but also with various biotic interactions (the competition between different organisms, both intraspecific and interspecies). When there is a consensus between an organism and the environment it means that this organism is well adjusted and increases its probability of survival. Symbiotic organisms possess the ability to establish an intimate interaction with another species (symbiont) that provides benefits for survival. Organisms that are involved in obligate symbiosis may adapt to a new environment by switching to another symbiotic partner that is locally better adapted; or by reshuffling symbiont communities present in the holobiont. This ability potentially gives them the opportunity to flexibly react to changing environmental conditions. In this thesis I studied the genetic diversity and geographic distribution of symbiont lineages in a lichen symbiosis to better understand environmental adaptation in symbiotic systems. Lichens are symbiotic associations of photobionts (one or several green-algal species or cyanobacteria), filamentous mycobionts (lichen-forming fungi) and co-inhabiting symbiotic microorganisms (lichen-associated bacteria, endolichenic fungi, and basidiomycete yeast). The coccoid green algae of the genus Trebouxia are the most common and the most studied lichen photobionts. However, the lack of formal Trebouxia taxonomy impedes our understanding of this photobiont diversity. Different species of mycobionts may share the same photobionts and a single species of mycobiont may associate with multiple, genetically different photobionts. Interactions among symbionts are not random and are constrained by evolutionary and environmental processes. The ability to associate with specific symbiotic partner is considered as a lichen strategy to facilitate adaptation to the constantly changing environments. The objectives of this thesis were to 1. Elucidate the intraspecific diversity of fungal and algal symbionts in the lichen Umbilicaria pustulata, given a range-wide (Europe-wide) sampling; 2. Evaluate species delimitation in trebouxioid photobionts based on molecular data, and 3. Quantify the climatic niches of photobiont lineages within U. pustulata, to establish whether the association with particular photobionts may modify the range and ecological niche of this lichen. The main findings of this thesis are: 1. The genetic diversity within trebouxoid photobiont of U. pustulata is higher than within the mycobiont. The most variable photobiont loci are nrITS rDNA, psbJ-L, and COX2. RbcL is the least variable photobiont locus. The most variable mycobiont loci are MCM7 and TSR1. This study shows a lack of genetic variability in the mycobiont loci EF1, nrITS rDNA, RPB1, and RPB2. 2. U. pustulata shows a low level of selectivity and is associated with numerous (most likely six) putative algal species. All photobiont haplotypes found in U. pustulata are shared between other lichen-forming fungi species, showing different patterns of species-to-species and species-to-community interactions. 3. The geographic distribution of U. pustulata symbionts associations is strongly connected to changes in the climatic niches. The mycobiont-photobiont interactions change along latitudinal temperature gradients (cold-adapted hotspot) and in Mediterranean climate zones (warm-adapted hotspot). U. pustulata broadens its distribution range by switching between photobionts that posses specific environmental preferences. Overall, this thesis contributes to the understanding of the symbiont diversity, fungal-algal association patterns and local adaptation linked to symbiont-mediated niche expansion in lichens. While identifying intraspecific diversity of both lichen symbionts is a key predisposition to understand symbiont interactions, population dynamics or co-evolution, my comparative study of the sequence-based molecular markers is relevant to reveal cryptic diversity in other lichen-forming fungi and their photobionts. The determination of species boundaries in lichen symbionts is essential for the study of selectivity and specificity, co-distribution, and co-evolution. Whereas the phylogenetic relationships of Trebouxiophyceae are poorly understood, the application of a novel multifaceted approach based on phylogenetic relationships, coalescence methods and morphological traits presented in this thesis is a promising tool to address species boundaries within this heterogeneous genus. This thesis provides evidence for symbiont-mediated niche expansion in lichens and highlights the preferential photobiont association from a niche-modeling perspective. My results shed light on symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation in the lichen symbiosis. The spatial genetic pattern found in U. pustulata symbionts supports the concept of ecological fitting and is consistent with patterns found in other lichen studies. Results presented here relate also to findings in different symbiotic systems, like reef-building corals, where different latitudinal patterns and symbiont switching has been reported as an adaptive response to severe bleaching events. Furthermore, this study is timely in light of global warming, because the identification of interaction hotspots among symbionts helps to understand how lichens or other symbiotic organisms adjust to the ongoing climate change. This knowledge will, in turn, facilitate the proper conservation of the most vulnerable lichen populations. My doctoral thesis provides a conceptual framework for analyzing symbiont diversity, interaction patterns, and symbiont-mediated niche expansion that could be applied to other types of lichen species as well as other organisms involved in facultative or obligate symbiosis

    Data from: Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualist-mediated niche expansions

    No full text
    The large distributional areas and ecological niches of many lichenized fungi may in part be due to the plasticity in interactions between the fungus (mycobiont) and its algal or cyanobacterial partners (photobionts). On the one hand, broad-scale phylogenetic analyses show that partner compatibility in lichens is rather constrained and shaped by reciprocal selection pressures and codiversification independent of ecological drivers. On the other hand, sub-species-level associations among lichen symbionts appear to be environmentally structured rather than phylogenetically constrained. In particular, switching between photobiont ecotypes with distinct environmental preferences has been hypothesized as an adaptive strategy for lichen-forming fungi to broaden their ecological niche. The extent and direction of photobiont-mediated range expansions in lichens, however, have not been examined comprehensively at a broad geographic scale. Here we investigate the population genetic structure of Lasallia pustulata symbionts at sub-species-level resolution across the mycobiont's Europe-wide range, using fungal MCM7 and algal ITS rDNA sequence markers. We show that variance in occurrence probabilities in the geographic distribution of genetic diversity in mycobiont-photobiont interactions is closely related to changes in climatic niches. Quantification of niche extent and overlap based on species distribution modeling and construction of Hutchinsonian climatic hypervolumes revealed that combinations of fungal-algal interactions change at the sub-species level along latitudinal temperature gradients and in Mediterranean climate zones. Our study provides evidence for symbiont-mediated niche expansion in lichens. We discuss our results in the light of symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation and niche evolution in mutualisms

    A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota)

    Get PDF
    The lichen-forming genus Pertusaria under its current circumscription is polyphyletic and its phylogenetic affiliations are uncertain. Here we study the species of the genera Pertusaria and Varicellaria which contain lecanoric acid as major constituent, have disciform apothecia, strongly amyloid asci, non-amyloid hymenial gel, 1-2-spored asci, and 1- or 2-celled ascospores with thick, 1-layered walls. We infer phylogenetic relationships using maximum likelihood and Bayesian analyses based on four molecular loci (mtSSU, nuLSU rDNA, and the protein-coding, nuclear RPB1 and MCM7 genes). Our results show that the lecanoric acid-containing species form a well-supported, monophyletic group, which is only distantly related to Pertusaria s.str. The phylogenetic position of this clade is unclear, but placement in Pertusaria s.str. is rejected using alternative hypothesis testing. The circumscription of the genus Varicellaria is enlarged to also include species with non-septate ascospores. Seven species are accepted in the genus: Varicellaria culbersonii (Vězda) Schmitt & Lumbsch, comb. nov., V. hemisphaerica (Flörke) Schmitt & Lumbsch, comb. nov., V. kasandjeffii (Szatala) Schmitt & Lumbsch, comb. nov., V. lactea (L.) Schmitt & Lumbsch, comb. nov., V. philippina (Vain.) Schmitt & Lumbsch, comb. nov., V. rhodocarpa (Körb.) Th. Fr., and V. velata (Turner) Schmitt & Lumbsch, comb. nov. A key to the species of Varicellaria is provided

    A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota)

    No full text
    The lichen-forming genus Pertusaria under its current circumscription is polyphyletic and its phylogenetic affiliations are uncertain. Here we study the species of the genera Pertusaria and Varicellaria which containlecanoric acid as major constituent, have disciform apothecia, strongly amyloid asci, non-amyloid hymenial gel, 1-2-spored asci, and 1- or 2-celled ascospores with thick, 1-layered walls. We infer phylogenetic relationships using maximum likelihood and Bayesian analyses based on four molecular loci (mtSSU, nuLSU rDNA, and the protein-coding, nuclear RPB1 and MCM7 genes). Our results show that the lecanoric acid-containing species form a well-supported, monophyletic group, which is only distantly related to Pertusaria s.str. The phylogenetic position of this clade is unclear, but placement in Pertusaria s.str. is rejected using alternative hypothesis testing. The circumscription of the genus Varicellaria is enlarged to also include species with non-septate ascospores. Seven species are accepted in the genus: Varicellaria culbersonii (Vězda) Schmitt & Lumbsch, comb. nov., Varicellaria hemisphaerica (Flörke) Schmitt & Lumbsch, comb. nov., Varicellaria kasandjeffii (Szatala) Schmitt & Lumbsch, comb. nov., Varicellaria lactea (L.) Schmitt & Lumbsch, comb. nov., Varicellaria philippina (Vain.) Schmitt & Lumbsch, comb. nov., Varicellaria rhodocarpa (Körb.) Th. Fr., and Varicellaria velata (Turner) Schmitt & Lumbsch, comb. nov. A key to the species of Varicellaria is provided

    Trebouxia.sp_raw.seqs.ITS

    No full text
    Raw sequence data, ITS, Trebouxia sp. photobionts, headers correspond to columns: DNA.ID and Pop.ID in raw data tabl

    Lasallia.pustulata_raw.seqs.MCM7

    No full text
    Raw sequence data, MCM7, Lasallia pustulata mycobionts, headers correspond to columns: DNA.ID and Pop.ID in raw data tabl

    Lichens and lichenicolous fungi of Magurski National Park (Poland, Western Carpathians)

    Get PDF
    The paper lists 337 species from Magurski National Park (MNP): 314 lichens, 18 lichenicolous fungi, four saprotrophic fungi and one lichenicolous myxomycete; 112 of them are new for MNP, 75 are reported for the first time for the Beskid Niski Mts, and two are new for Poland. Selected species are accompanied by taxonomic notes and remarks on their distribution in Poland and other Carpathian ranges. First records of Intralichen lichenicola, Burgoa angulosa and Verrucaria policensis and a second record of Epigloea urosperma are given for the whole Carpathian range, and Fuscidea arboricola was recorded for the first time in the Western Carpathians. Halecania viridescens and Mycomicrothelia confusa are new for the Polish Carpathians. The records of Absconditella pauxilla, Collema crispum, Licea parasitica and Rinodina griseosoralifera in MNP are their second known localities for the range. 93 species, mainly rare or threatened in Poland, were reported from MNP in the 20th century but were not refound
    corecore