32 research outputs found

    Evaluation of Xpert MTB/RIF testing for rapid diagnosis of childhood pulmonary tuberculosis in children by Xpert MTB/RIF testing of stool samples in a low resource setting

    Get PDF
    Objective: Children with tuberculosis (TB) remain underdiagnosed due to difculty in testing for Mycobacterium tuberculosis (MTB) infection. We evaluated the Xpert MTB/RIF assay for respiratory and stool testing in children for pulmonary TB through a cross-sectional study at tertiary care facilities in Karachi, Pakistan. Fifty children aged 0–15 years screened by a modifed Kenneth-Jones (KJ) score were included. Mycobacterial culture of respiratory samples was the microbiological standard against stool Xpert TB results. All positive TB cases were compared against a treatment response standard (TRS).Results: Twelve study subjects were diagnosed by Xpert TB and nine by MTB culture. Compared with culture [gastric aspirates (GA)/sputum (spm)], stool Xpert TB had a sensitivity of 88.9% (95% CI 50.7–99.4) and a specifcity of 95% (95% CI 81.8–99.1). Xpert TB stool versus GA/spm had sensitivity of 81.8% (95% CI 47.8–96.8) and specifcity of 94.7% (95% CI 84.6–99.9). We found good agreement (kappa scores of \u3e0.8) between stool Xpert, GA/spm Xpert and GA/ spm culture. Stool Xpert PPV and NPV against TRS was 100 and 82.1% respectively. Stool Xpert TB is a relatively easy option for diagnosis for pulmonary childhood TB in a high burden low-resource setting

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    SOLID LIPID NANOPARTICLES: AN EMERGING NOVEL DRUG DELIVERY SYSTEM

    No full text
    The solid lipid nanoparticles (SLNs), a type of lipid nanoparticles (LNPs), is a special field of interest that has emerged during the last few decades as a potential colloidal carrier delivery system. They have gained great attention in controlling the drug release, increasing the bioavailability and attaining a sustain release profile of entrapped drug substance with fewer side effects as compared to traditional dosage forms. They serve as a promising system in various pharmaceutical fields such as cosmetics, research, clinical medicine and other allied sciences. SLNs have also been identified as a substitute to carrier systems such as liposomes, emulsions and polymeric nanoparticles. In the present review, the structure, advantages and applications of SLNs are focused which would provide an idea of global scenario of SLNs

    Health and nutrition claims for infant formula:international cross sectional survey

    Get PDF
    Objectives: To review available health and nutrition claims for infant formula products in multiple countries and to evaluate the validity of the evidence used for substantiation of claims. Design: International cross sectional survey. Setting: Public facing and healthcare professional facing company owned or company managed formula industry websites providing information about products marketed for healthy infants delivered at full term in 15 countries: Australia, Canada, Germany, India, Italy, Japan, Nigeria, Norway, Pakistan, Russia, Saudi Arabia, South Africa, Spain, the United Kingdom, and the United States in 2020-22. Main outcome measures: Number and type of claims made for each product and ingredient. References cited were reviewed and risk of bias was assessed for registered clinical trials using the Cochrane risk of bias tool, and for systematic reviews using the Risk Of Bias in Systematic reviews tool.This study received no external funding.Peer reviewe

    Measuring low energy atmospheric neutrino spectra with the JUNO detector

    No full text
    Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about Cosmic Rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric νe\nu_e and νμ\nu_\mu fluxes is presented in this paper. In this study, a sample of atmospheric neutrinos Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3" PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since νe\nu_e and νμ\nu_\mu interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region

    TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution

    No full text
    The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of >50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022

    Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO

    No full text
    We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged \textit{in situ} measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3σ\sigma for 3 years of data taking, and achieve better than 5σ\sigma after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space

    Radioactivity control strategy for the JUNO detector

    No full text
    JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV
    corecore