225 research outputs found

    Laser Detection Back-Action in Cantilevers

    Get PDF
    Laser Detection Back-Action in Cantilever

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    Visualizing the orientational dependence of an intermolecular potential

    Get PDF
    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C₆₀) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard–Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation

    Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

    Get PDF
    International audienceThe mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulation as a computational microscope allows investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy including sample preparation, measurement and analysis of force spectroscopy using AFM and its interpretation in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging of computational tools with experimental technique

    Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM)

    Get PDF
    We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study

    Mechanical Properties of Silicon Nanowires

    Get PDF
    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm

    Hindered rolling and friction anisotropy in supported carbon nanotubes

    Full text link
    Carbon nanotubes (CNTs) are well known for their exceptional thermal, mechanical and electrical properties. For many CNT applications it is of the foremost importance to know their frictional properties. However, very little is known about the frictional forces between an individual nanotube and a substrate or tip. Here, we present a combined theoretical and experimental study of the frictional forces encountered by a nanosize tip sliding on top of a supported multiwall CNT along a direction parallel or transverse to the CNT axis. Surprisingly, we find a higher friction coefficient in the transverse direction compared with the parallel direction. This behaviour is explained by a simulation showing that transverse friction elicits a soft 'hindered rolling' of the tube and a frictional dissipation that is absent, or partially absent for chiral CNTs, when the tip slides parallel to the CNT axis. Our findings can help in developing better strategies for large-scale CNT assembling and sorting on a surface.Comment: 8 pages, 5 figure
    corecore