13 research outputs found

    Enhancing osteogenic differentiation of dental pulp stem cells through rosuvastatin loaded niosomes optimized by Box-Behnken design and modified by hyaluronan: a novel strategy for improved efficiency

    No full text
    Abstract Bone tissue engineering necessitates a stem cell source capable of osteoblast differentiation and mineralized matrix production. Dental pulp stem cells (DPSCs), a subtype of mesenchymal stem cells from human teeth, present such potential but face challenges in osteogenic differentiation. This research introduces an innovative approach to bolster DPSCs’ osteogenic potential using niosomal and hyaluronan modified niosomal systems enriched with rosuvastatin. While rosuvastatin fosters bone formation by regulating bone morphogenetic proteins and osteoblasts, its solubility, permeability, and bioavailability constraints hinder its bone regeneration application. Using a Box-Behnken design, optimal formulation parameters were ascertained. Both niosomes were analyzed for size, polydispersity, zeta potential, and other parameters. They displayed average sizes under 275 nm and entrapment efficiencies exceeding 62%. Notably, niosomes boosted DPSCs’ cell viability and osteogenic marker expression, suggesting enhanced differentiation and bone formation. Conclusively, the study underscores the potential of both niosomal systems in ameliorating DPSCs’ osteogenic differentiation, offering a promising avenue for bone tissue engineering and regeneration. Graphical Abstrac

    Improving the dissolution properties of spironolactone using liquisolid technique

    No full text
    In this study the effect of liquisolid technique on the dissolution profile of spironolactone was evaluated. Different formulations of spironolactone liquisolid compacts were prepared using various amounts of non-volatile vehicles (Poly ethylene glycol 400 and glycerin). The ratio of microcrystalline cellulose (as carrier) to silica (as coating powder material) was 20 for all formulations. After preparing tablets by direct compression with constant compression load, the release profiles were evaluated by USP paddle method. Differential scanning calorimeter (DSC) and FTIR were used to evaluate any interaction between spironolactone and other ingredients. The liquisolid tablets exhibited significantly higher dissolution rates in comparison with conventionally direct compressed tablets. Furthermore results showed dissolution rate enhancement of liquisolid tablets by increase in the amounts of non-volatile vehicles. Differential scanning calorimetry showed that, the drug has got solubilized in the liquid vehicle. FT-IR spectroscopy studies of pure spironolactone, liquisolid compacts, glycerin and PEG400 supported solubilization of the drug in the liquid vehicle too. The FT-IR spectra also showed that no interactions have been occurred between spironolactone and other ingredients. In conclusion the liquisolid technique can be a suitable method in order to prepare rapid release tablets of poorly water-soluble drugs such as spironolactone
    corecore