6 research outputs found

    Heteroatom-doped porous carbon materials derived from poly(ionic liquid)s and their composites for battery and catalytic applications

    No full text
    In the past decade, there has been significant interest in heteroatom-doped porous carbons, driven by the distinctive and adjustable physical and chemical properties that they exhibit across scales, from the atomic to the macroscopic level. Particularly, attributes such as conductivity, electron density, high specific surface area, hierarchical pore structure, and oxidation resistance offer a wide range of characteristics for diverse applications. The development of multimodal, hierarchical pore sizes, ranging from micropores to macropores, ensures balanced diffusion resistance and a high surface area for active site accommodation. However, their synthesis usually involves multiple steps or complicated processing to incorporate both hierarchically porous structures and heteroatoms in carbon materials. This PhD thesis explores poly(ionic liquid)s (PILs) for preparation of heteroatom-doped porous carbon materials, driven by the growing demand for functional carbons in industry and academia. The aim of this thesis is to develop straightforward synthetic approaches to introduce various heteroatoms and different pore sizes in the carbonous structure and study their diverse functions. Here, we propose and explore fabrication methods based on two precursors. First, PILs were examined as both the carbon and heteroatom source, serving as a sacrificial template for porous carbons. Second, the delicate structure of wood was employed as a carbon source to generate macropores, while being coated with PILs to introduce heteroatoms or iron-based nanoparticles and create additional micropores. Moreover, the application of these carbonaceous materials was studied in two areas, i.e., batteries and artificial enzymes. This research is likely to contribute to a deeper understanding of synthetic methodologies of heteroatom-doped porous carbon materials and their physiochemical properties for various applications

    Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures

    No full text
    We report a side group modification strategy to tailor the structure of a polymer of intrinsic microporosity (PIM-1). PIM-1 with an average of ∼50% of the repeat units converted to tetrazole is prepared, and a subsequent reaction then introduces three types of pseudo-ionic liquid tetrazole-like structures (PIM-1-ILx). The presence of pseudo-ionic liquid functional groups in the PIM-1 structure increases gas selectivities for O2/N2 and CO2/N2, while it decreases pure-gas permeabilities. The overall gas separation performance of PIM-1-ILx is close to the 2008 Robeson upper bound. Since the tetrazoles are versatile groups for building a wide variety of ionic liquids, the modification method can be expanded to explore a broad spectrum of functional groups
    corecore