6 research outputs found

    CHC22 and CHC17 clathrins have distinct biochemical properties and display differential regulation and function

    Get PDF
    Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance. [Abstract copyright: Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

    CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis

    Get PDF
    Post-prandial blood glucose is cleared by Glucose Transporter 4 (GLUT4) released from an intracellular GLUT4 storage compartment (GSC) to the surface of muscle and adipose tissue in response to insulin. Here we map the biosynthetic pathway for human GSC formation, which involves the clathrin isoform CHC22. We observe that GLUT4 transits more slowly through the early secretory pathway than the constitutively-secreted GLUT1 transporter, and show CHC22 colocalizes with p115 in the endoplasmic-reticulum-to-Golgi-intermediate compartment (ERGIC). We find CHC22 functions in membrane traffic from the early secretory pathway during formation of the replication vacuole of Legionella pneumophila, which also acquires components of the GLUT4 pathway. We show that p115 but not GM130 is required for GSC formation, indicating GSC biogenesis from the ERGIC bypasses the Golgi. This GSC biogenesis pathway is attenuated in mice, which lack CHC22, and rely mainly on recapture of surface GLUT4 to populate their GSC. GLUT4 traffic to the GSC is enhanced by CHC22 function at the human ERGIC, which has implications for pathways to insulin resistance
    corecore