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Abstract  

Glucose Transporter 4 (GLUT4) is sequestered inside muscle and fat, then released 

by vesicle traffic to the cell surface in response to post-prandial insulin for blood 

glucose clearance. Here we map the biogenesis of this GLUT4 traffic pathway in 

humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits 

through the early secretory pathway more slowly than the constitutively-secreted 

GLUT1 transporter and localize CHC22 to the endoplasmic-reticulum-to-Golgi-

intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, 

as demonstrated by an essential role in forming the replication vacuole of Legionella 

pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes 

with ERGIC tether p115, GLUT4 and sortilin and down-regulation of either p115 or 

CHC22, but not GM130 or sortilin abrogate insulin-responsive GLUT4 release. This 

indicates CHC22 traffic initiates human GLUT4 sequestration from the ERGIC, and 

defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic 

recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, 

which lack CHC22. 

 

Summary: 

Blood glucose clearance relies on insulin-mediated exocytosis of glucose transporter 

4 (GLUT4) from sites of intracellular sequestration. We show that in humans, CHC22 

clathrin mediates membrane traffic from the ER-to-Golgi Intermediate Compartment, 

which is needed for GLUT4 sequestration during GLUT4 pathway biogenesis. 
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Glucose transporter 4 (GLUT4) mediates post-prandial blood glucose clearance into 

muscle and adipose tissues following insulin-stimulated translocation to the cell 

surface from sites of intracellular sequestration, known collectively as the GLUT4 

storage compartment (GSC) (Bogan, 2012; Leto and Saltiel, 2012). Deregulation of 

GLUT4 vesicle release occurs during insulin resistance and contributes to 

pathogenesis of type 2 diabetes (T2D) (Bogan, 2012). In rodent models, endocytic 

pathways have been identified as essential routes for retrograde recycling of GLUT4 

to reform insulin-responsive vesicles after insulin-mediated release (Antonescu et al., 

2008; Bryant et al., 2002; Fazakerley et al., 2009; Jaldin-Fincati et al., 2017; Kandror 

and Pilch, 2011). Endosomal sorting and retrograde transport through the trans-Golgi 

network is involved in this process, generating the GSC (Shewan et al., 2003), which 

is a mixture of tubules and vesicles in which GLUT4 is sequestered in the absence of 

insulin. The trafficking routes by which newly synthesized GLUT4 accesses the GSC 

and participates in its formation are less well defined. In human myocytes and 

adipocytes, GSC formation involves the non-canonical isoform of clathrin, CHC22, 

which is missing from rodents due to loss of the encoding gene (Wakeham et al., 

2005). Here we define a role for CHC22 clathrin in the biosynthetic trafficking 

pathway delivering GLUT4 to the GSC in humans. 

 

The non-canonical clathrin isoform CHC22 is encoded on human chromosome 22 

and has 85% sequence identity with the canonical CHC17 clathrin isoform 

(Wakeham et al., 2005). CHC17 performs receptor-mediated endocytosis at the 

plasma membrane and protein sorting at the trans-Golgi network in all eukaryotic 

cells and tissues (Brodsky, 2012). CHC22 has been implicated in distinct tissue-

specific membrane traffic pathways consistent with its different biochemical 

properties and restricted tissue expression. While both CHC22 and CHC17 homo-

trimerize into triskelia that assemble to form latticed vesicle coats, the CHC22 coat is 

more stable and within cells, the two clathrins form separate vesicles (Dannhauser et 
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al., 2017). CHC22 does not bind the clathrin light chain subunits associated with 

CHC17 or the endocytic AP2 adaptor that recruits CHC17 to the plasma membrane, 

while CHC22 interacts preferentially with the GGA2 adaptor compared to CHC17 

(Dannhauser et al., 2017; Liu et al., 2001; Vassilopoulos et al., 2009). In agreement 

with its adaptor specificity, several analyses have now confirmed that CHC22 does 

not support receptor-mediated endocytosis at the plasma membrane (Dannhauser et 

al., 2017), though earlier studies suggested that it might replace CHC17 function 

upon over-expression (Hood and Royle, 2009).  

 

In humans, CHC22 is expressed most highly in muscle, reaching about 10% of 

CHC17 levels, and has variable but lower expression in other tissues (Esk et al., 

2010). In both human myocytes and adipocytes, CHC22 is needed for formation of 

the GSC, a membrane traffic pathway that these cell types uniquely share 

(Vassilopoulos et al., 2009). We previously observed that CHC22 is required for a 

retrograde transport pathway from endosomes (Esk et al., 2010), a step that CHC17 

can also perform (Johannes and Popoff, 2008) and which has been shown to be 

important in murine GSC formation (Jaldin-Fincati et al., 2017). However, when 

CHC22 is depleted from human myocytes, CHC17 does not compensate for CHC22 

loss and cells are unable to form an insulin-responsive GSC, suggesting that CHC22 

mediates an additional pathway in human GSC formation (Vassilopoulos et al., 

2009). CHC22 is also transiently expressed in the developing human brain (Nahorski 

et al., 2015) and has been implicated in protein targeting to dense core secretory 

granules, another pathway that involves sequestration of cargo away from standard 

endocytic and secretory pathways (Nahorski et al., 2018). 

 

In the adipocytes and myocytes of insulin resistant type-2 diabetic patients, GLUT4 

accumulates intracellularly (Garvey et al., 1998; Maianu et al., 2001), in a region 

where CHC22 also accumulates (Vassilopoulos et al., 2009). Transgenic expression 
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of CHC22 in murine muscle caused similar accumulation of GLUT4 with CHC22 

along with two other proteins involved in intracellular GLUT4 sorting, IRAP and 

VAMP2, and aged CHC22-transgenic animals developed hyperglycemia. These 

observations not only highlight fundamental differences in GLUT4 intracellular 

trafficking to the GSC between human and mice, but also link abnormal CHC22 

intracellular localization and function to defects in GLUT4 trafficking during insulin 

resistance. Therefore, mapping the CHC22-mediated GLUT4 trafficking pathways 

leading to the biogenesis of the GSC in humans is relevant to pathophysiology 

leading to type 2 diabetes. Understanding CHC22’s role in GLUT4 traffic should also 

shed light on its role during the development of pain-sensing neurons, which was 

found to be defective in children homozygous for a rare familial mutation in the 

CHC22-encoding gene, who unfortunately did not survive to an age where their 

glucose metabolism could be studied (Nahorski et al., 2015). 

 

In the present study, we identify a specialized pathway that CHC22 mediates during 

biogenesis of the human GSC by analyzing CHC22 function and distribution in 

several human cell models. We observed that CHC22 localizes to the early part of 

the secretory pathway where GLUT4 is delayed during its biogenesis relative to the 

constitutively-secreted GLUT1 transporter. In particular, CHC22 co-localizes and 

complexes with p115, a resident of the ER-to-Golgi Intermediate Compartment 

(ERGIC) where it participates in membrane export from that compartment. We 

confirmed that this compartment was the ERGIC, by utilizing the bacterium 

Legionella pneumophila, which is known to co-opt membrane from the ERGIC to 

avoid the degradative environment of the endocytic pathway. Along with CHC22, the 

bacterial compartment also acquired essential components of the GLUT4 pathway, 

namely IRAP, sortilin and GGA2. We further found that the CHC22-dependent 

pathway for GLUT4 transport to the human GSC relies on p115 but not GM130, 
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indicating that this pathway depends on membrane traffic from the ERGIC in an 

unconventional secretory route for intracellular sequestration. 

 

Results 

HeLa-GLUT4 cells have an insulin-responsive GLUT4 trafficking pathway that 

requires CHC22. 

To study the role of CHC22 in formation of the human GSC, we established a cellular 

model in which GLUT4 translocation can be easily detected. This was necessitated 

by the limited experimental capacity of available human muscle and adipocyte cell 

lines and the lack of reagents to detect endogenous GLUT4 at the cell surface. We 

generated a stable HeLa cell line (HeLa-GLUT4) expressing human GLUT4 

containing a haemagglutinin (HA) tag in the first exofacial loop and a GFP tag at the 

intracellular carboxyl terminus, a construct that has been extensively characterized 

and validated for the study of intracellular GLUT4 trafficking in rodent cells (Dawson 

et al., 2001; Dobson et al., 1996). HeLa cells were chosen because they have levels 

of CHC22 comparable to those in human muscle cells (Esk et al., 2010) and they 

also express sortilin, another protein important for GLUT4 traffic to an insulin-

responsive compartment (Huang et al., 2013; Shi and Kandror, 2005; Shi and 

Kandror, 2007).  

 

GLUT4 was sequestered intracellularly in HeLa-GLUT4 cells in the absence of 

insulin (basal), localizing to peripheral vesicles (arrowheads) and a perinuclear depot 

(arrows), as observed for insulin-releasable GLUT4 vesicles and the tubulo-vesicular 

GSC of murine cells (Bryant et al., 2002; Shewan et al., 2003) (Fig. 1 A). Upon 

insulin treatment (15 min), GLUT4 was detected at the cell surface using a 

monoclonal antibody to the haemagglutinin (HA) tag (anti-HA) (Fig. 1 A). The degree 

of GLUT4 translocation was quantified using a fluorescence-activated cell sorter 

(FACS) to measure the mean fluorescence intensity (MFI) of surface GLUT4 relative 
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to the MFI of total cellular GLUT4 (GFP signal) (Fig. 1 B). Additionally, treatment of 

HeLa-GLUT4 cells with insulin induced phosphorylation of AKT and its substrate 

AS160, two modifications required for insulin-stimulated GLUT4 translocation 

(Bogan, 2012) (Fig. 1 B). Intracellular sequestration and insulin responsiveness of 

GLUT4 was observed to be specific by comparison to endogenous Class I molecules 

of the Major Histocompatibility Complex (MHCI), which were constitutively expressed 

at the plasma membrane of HeLa-GLUT4 cells, clearly segregated from GLUT4 

under basal conditions (Fig. 1 C), and unchanged by insulin treatment. Upon insulin 

treatment, GLUT4 co-localized with MHCI at the cell surface and this was prevented 

by treatment of HeLa-GLUT4 cells with siRNA targeting CHC22 (Fig. 1 C and D). 

Down-regulation of CHC22 did not affect the distribution of MHCI in either basal or 

insulin-stimulated conditions (Fig. 1 C). Thus formation of the insulin-responsive 

GLUT4 pathway in HeLa-GLUT4 cells depends on CHC22. 

 

In rodent cells, GLUT4 released by insulin to the plasma membrane can return by 

endocytosis and retrograde transport to a syntaxin 6 (STX-6)–positive GSC within 30 

minutes (Perera et al., 2003). Replicating this pulse-chase experiment in the HeLa-

GLUT4 model, we labeled surface GLUT4 with anti-HA antibody following insulin 

stimulation and tracked internalized GLUT4 to a perinuclear compartment 

overlapping with STX-6, with similar kinetics to those observed in rodent cells (Fig. 1 

E and F). Using structured-illumination microscopy (SIM), we observed that, under 

basal conditions, the perinuclear GLUT4 depot in HeLa-GLUT4 cells partially co-

localized with STX-6 (arrowheads, Fig. 1 G), which is considered a marker of the 

GSC in rodent cells (3T3-L1 mouse adipocytes and L6 rat myotubes) (Foley and Klip, 

2014; Shewan et al., 2003). The GSC in HeLa-GLUT4 cells also had properties of 

the human GSC in that siRNA-mediated depletion of CHC22 induced dispersal of 

GLUT4 from the perinuclear region (Fig. 1 H) and inhibited insulin-stimulated GLUT4 

translocation (Fig. 1 D)(Esk et al., 2010; Vassilopoulos et al., 2009). Taken together, 
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our results show that HeLa cells stably expressing HA-GLUT4-GFP form an 

intracellular GSC, respond to insulin stimulation by rapidly translocating GLUT4 to 

the plasma membrane and recycle GLUT4 back to the GSC. Furthermore, CHC22 

expression is critical for establishing this GLUT4 trafficking pathway. Thus, the model 

recapitulates features of the GLUT4 pathway observed for both mouse and human 

cells and, while the pathway may not have every regulator controlling GLUT4 traffic 

in muscle and adipocytes, it can be studied to identify players and routes involved in 

GLUT4 trafficking in human cells. We note that during the course of this work, other 

laboratories developed and validated similar models of insulin-dependent GLUT4 

translocation in HeLa cells (Haga et al., 2011; Trefely et al., 2015). 

 

Newly synthesized GLUT4 co-localizes with CHC22 and is delayed in the early 

secretory pathway relative to constitutively expressed GLUT1. 

Formation of the GSC in rodent cells relies on the biosynthetic pathway feeding the 

GSC with newly synthesized GLUT4 (Watson et al., 2004) and recycling pathways 

that replenish it after insulin-mediated GLUT4 exocytosis (Antonescu et al., 2008; 

Bryant et al., 2002; Fazakerley et al., 2009; Kandror and Pilch, 2011; Martin et al., 

2006). Our previous studies demonstrated a role for CHC22 in human GSC 

formation (Vassilopoulos et al., 2009) and identified a function for CHC22 in 

retrograde transport from endosomes (Esk et al., 2010), suggesting that CHC22 

could participate in GSC replenishment after GLUT4 translocation. To address 

whether CHC22 is also involved in biogenesis of the GLUT4 pathway from the 

secretory pathway, we tracked newly synthesized GLUT4 relative to the 

constitutively-expressed GLUT1, (Hresko et al., 1994; Hudson et al., 1992). Their 

biosynthetic pathways were compared by the Retention Using Selective Hooks 

(RUSH) approach (Boncompain et al., 2012) for which each transporter was tagged 

with a streptavidin-binding protein (SBP) as well as GFP or mCherry and an HA tag.  

The resulting fusion proteins HA-GLUT4-SBP-GFP and HA-GLUT1-SBP-mCherry, 
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were co-expressed in HeLa cells also expressing streptavidin fused to an ER-

resident isoform of the human invariant chain (Ii-hook) (Schutze et al., 1994). The 

ER-retained HA-GLUT1-SBP-mCherry and HA-GLUT4-SBP-GFP were then 

synchronously released for ongoing traffic upon addition of biotin to the cells (Fig. 2 

A, Videos 1 and 2). Following release, both transporters showed initial perinuclear 

localization, but after 25 minutes the GLUT1 and GLUT4 pathways diverged and 

vesicles with GLUT1 were observed trafficking to the cell surface (arrowheads, 26-57 

minutes post-biotin addition), while GLUT4 remained concentrated in a perinuclear 

region. This was consistent with the expected constitutive secretion of GLUT1 and 

sequestration of GLUT4 and further demonstrated the specificity of intracellular 

sequestration of GLUT4 in HeLa cells.  

 

We then analyzed these pathways in more detail by visualizing the traffic of HA-

GLUT4-SBP-GFP or HA-GLUT1-SBP-GFP relative to CHC22 and to markers of the 

secretory pathway at different time points after biotin addition, and co-localization 

was quantified. Within 30 minutes of biotin addition, GLUT1 rapidly exited the ER and 

trafficked through the Golgi apparatus as exemplified by the 40% decrease in overlap 

with the ER resident protein calnexin (CNX) (Fig. 2, B and C; black line) and the 

transient increase in overlap with ERGIC markers (p115 and ERGIC-53, Fig. 2 D-G; 

black lines), the Golgi marker GM130 and the trans-Golgi marker TGN46 (Fig. 2, H-

K; black lines). GLUT1 was detected at the plasma membrane as soon as 30 

minutes post ER release (arrows) and by 60 minutes, GLUT1 was detected in 

endosomal structures (arrowheads), indicating internalization from the plasma 

membrane. In contrast, GLUT4 exit from the ER was slower (Fig. 2, B and C, red 

lines). GLUT4 overlap with ERGIC-53, p115 and GM130 and TGN46 increased at 15 

minutes post release but did not decrease over time (Fig. 2, D-K, red lines).  GLUT4 

co-localization with CHC22 was similar to its residence with secretory pathway 

markers, peaking at 15 minutes but remaining more co-localized with CHC22 than 
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GLUT1, which only transiently overlapped with CHC22 (Fig. 2 L). Overall, these 

experiments indicate that the trafficking kinetics of newly synthesized GLUT1 and 

GLUT4 are fundamentally different. Moreover, following ER release, GLUT4, and not 

GLUT1, was retained in a perinuclear region that overlaps with CHC22, suggesting a 

role for CHC22 in trafficking newly synthesized GLUT4 and that CHC22 might 

interact with secretory pathway compartments. 

 

CHC22 localizes with markers of the ER-to-Golgi Intermediate Compartment. 

To identify potential locations for CHC22 function in transporting newly synthesized 

GLUT4, we analyzed CHC22 overlap with markers of the secretory pathway in HeLa-

GLUT4 cells and in human myotubes formed by differentiation of two different human 

myoblast cell lines (LHCNM2 or hSkMC-AB1190-GLUT4) (Figs. 2 M, S1, 3 and 4). 

The LHCNM2 cells express low levels of endogenous GLUT4 upon differentiation 

(Vassilopoulos et al., 2009) and the hSkMC-AB1190-GLUT4 cells were derived from 

the transformed human myoblast (line AB1190) by transfection and selected for 

permanent expression of HA-GLUT4-GFP. These cells were analyzed to establish 

whether pathways identified in the HeLa-GLUT4 cells are present in human 

myotubes where the GLUT4 pathway naturally operates. Using a commercially 

available polyclonal antibody specific for CHC22 and not reactive with CHC17 (Fig. 

S1 A), we observed significant co-localization of CHC22 with two markers of the 

ERGIC, namely p115 (Alvarez et al., 2001) and ERGIC-53 (Lahtinen et al., 1996) in 

both the HeLa-GLUT4 model and in human myotubes (Figs. 2 M and S1 B and C). 

CHC22 only partially overlapped with Golgi markers GM130 and TGN46 (Figs. 2 M 

and S1 D and E) and no significant co-localization was seen with ER markers 

calreticulin or calnexin in all cell lines (Figs. 2 M and S1 F and G). Given the limited 

spatial resolution of conventional laser scanning confocal microscopy (200 nm), 

these overlap values could be overestimated. We therefore used super-resolution 

Structured Illumination Microscopy (SIM), which improves lateral resolution twofold 
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(100 nm). Using SIM, we confirmed the substantial overlap between CHC22 and 

ERGIC markers p115 and ERGIC-53 in HeLa-GLUT4 and in the human skeletal 

muscle cells (Figs. 3 A-D, arrowheads, and S1 I) with most extensive overlap 

between CHC22 and p115. SIM analysis did not support the apparent overlap 

between CHC22 and Golgi markers obtained by confocal microscopy in either HeLa-

GLUT4 or differentiated human myoblasts. In both cell types, CHC22 was separated 

from cis-Golgi (GM130) and trans-Golgi (TGN46) markers (Figs. 4 A and B and S1 I), 

though localized adjacent to both compartments. Co-staining for p115 and STX-6 

showed alignment of compartments with these markers in both cell types but little 

overlap (Fig. 4 C), suggesting that ERGIC and CHC22 compartments are closely 

associated with but not coincident with sites of GLUT4 retrograde transport. GLUT4 

was widely distributed in the cells analyzed by SIM without preferential co-

localization with any particular marker analyzed.   

 

To further define the relationship between CHC22, ERGIC markers and the 

retrograde transport of GLUT4 internalized after insulin-mediated release, HeLa-

GLUT4 cells were treated with insulin and GLUT4 internalization was tracked by 

uptake of anti-HA antibody. By confocal microscopy, GLUT4 showed time-dependent 

co-localization with CHC22 and ERGIC-53 (Fig. S2) after 10 and 30 minutes of re-

uptake, indicating that recaptured GLUT4 accumulates in close proximity to CHC22 

and the ERGIC. When HeLa-GLUT4 or the hSkMC-AB1190-GLUT4 human 

myotubes were treated with Brefeldin A (BFA), CHC22 co-distributed with the ERGIC 

markers p115, ERGIC-53 and Rab1 and segregated away from the perinuclear 

GLUT4 (Fig. S3). This is consistent with our previous observations that BFA does not 

cause CHC22 to dissociate from intracellular membranes (Liu et al., 2001) and 

supports association of CHC22 with ERGIC membranes. We also observed that BFA 

treatment did not affect GLUT4 release to the plasma membrane in response to 

insulin and that GLUT4 was less localized with CHC22 or ERGIC markers upon 
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insulin stimulation, in the presence or absence of BFA (Fig. S3 C-F). This supports 

observations from others showing that GSC formation is not affected by BFA (Martin 

et al., 2000). Together, these data suggest that CHC22-mediated trafficking leads to 

the GSC, and could be involved in initial GSC formation from the secretory pathway 

by mediating GLUT4 traffic emerging from the ERGIC in addition to its previously 

defined role in retrograde transport from endosomes to the GSC (Esk et al., 2010). 

Furthermore, these results highlight the close proximity of the ERGIC to the 

compartment where GLUT4 accumulates after endocytic recapture. 

 

CHC22 participates in membrane trafficking from the ERGIC. 

To establish whether CHC22 has functional activity at the ERGIC, we took 

advantage of Legionella pneumophila (L.p.), a facultative intracellular pathogen that 

avoids the host’s endo-lysosomal compartment and specifically hijacks membranes 

from the early secretory pathway to create an ER/ERGIC-like, L.p.-containing 

vacuole (LCV) for replication (Kagan and Roy, 2002). Upon infection, L.p. secretes 

~300 effector proteins, through a type IV secretion system, some of which enable 

recruitment of ER / ERGIC proteins calnexin, Sec22b, Rab1, ERGIC-53 and Arf1 to 

the LCV (Derre and Isberg, 2004; Kagan and Roy, 2002; Kagan et al., 2004), which 

are needed for its replication. The mature LCV retains ER-like properties, including 

the lumenal proteins calnexin, BiP and calreticulin and does not acquire Golgi 

markers (Derre and Isberg, 2004; Kagan and Roy, 2002; Kagan et al., 2004; Treacy-

Abarca and Mukherjee, 2015). Given that the LCV is derived from the ER, and that 

CHC22 localizes to a compartment emerging from the ER, we tested whether 

CHC22 associates with membranes involved in LCV formation. A549 human lung 

adenocarcinoma cells were transiently transfected to express GFP-tagged CHC22 or 

GFP-tagged CHC17, then infected with L.p.. CHC22, but not CHC17, was associated 

with the membranes surrounding the LCV (Fig. 5 A and B). Similar LCV co-

localization with CHC22 was observed in untransfected cells infected with L.p. and 
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immuno-stained for endogenous CHC22 or CHC17 (Fig. 5 C). CHC22 did not 

localize with the isogenic avirulent L.p. mutant ΔdotA, which still enters cells but 

lacks a functional secretion system and cannot secrete effectors to create an ER-like 

vacuole (Fig. 5 A and B). To further address whether CHC22 is involved in transfer of 

membrane to the LCV, we treated A549 cells with siRNA targeting CHC22 prior to 

infection. The resulting CHC22 down-regulation significantly compromised 

recruitment of Sec22b to the bacterial vacuole at 1 hour post-infection (Fig. S4 A and 

B), suggesting defective vacuole maturation. This was confirmed by assessing 

bacterial replication eight hours after infection with WT or ΔdotA L.p. strains following 

CHC22 or CHC17 depletion. CHC22 depletion reduced the proportion of vacuoles 

containing >4 L.p. by more than 9-fold, while CHC17 depletion reduced vacuoles with 

>4 L.p. by only 2-fold (Fig. 5 D), indicating that CHC22 is required to form a 

replicative vacuole and a possible role for CHC17 during bacterial uptake. The latter 

conclusion is supported by the observation that after CHC22 down-regulation, 

vacuoles with 1 L.p., indicating bacterial entry, were observed, but vacuoles with 1 

L.p. were less frequent in cells depleted for CHC17 infected with an equivalent 

number of bacteria. Infection of cells transfected with siRNA targeting CHC22 with an 

equivalent number of avirulent ΔdotA L.p. showed that these bacteria could also 

enter cells, with 94% vacuoles observed harboring only 1 L.p. (Fig. 5 D). These 

observations indicate that L.p. specifically co-opts CHC22 to acquire membrane 

derived from the early secretory pathway, which is needed for maturation of a 

replication-competent LCV, and suggest that L.p. effectors might interact with CHC22 

or its partners. 

 

Since CHC22-mediated membrane traffic contributes to formation of the LCV, we 

addressed whether GLUT4 or other components of the GLUT4 trafficking pathway 

traffic to the LCV. After infection, we observed significant enrichment of sortilin, IRAP 

and GGA2 to the LCV, all known functional partners for intracellular GLUT4 
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sequestration (Li and Kandror, 2005; Shi et al., 2008; Shi and Kandror, 2005; Shi and 

Kandror, 2007; Watson et al., 2004) (Fig. 5 E-H). We also observed recruitment of 

Rab1, a host protein that is extensively modified by L.p. during infection (Mukherjee 

et al., 2011) (Figs. 5 E and S4 C). In contrast, the localization of GLUT4 (Figs. 5E 

and S4 D) or insulin effector Sec16a (Bruno et al., 2016) (Fig. S4 E and F) to the 

LCV was not statistically significant. We also did not detect p115 on the LCV (Fig. 5 

E and I), confirming previous work from others suggesting that one of the L.p. 

effectors LidA bypasses the need for p115 by binding Rab 1 during host membrane 

recruitment (Derre and Isberg, 2004; Machner and Isberg, 2006). Thus, analysis of 

L.p. infection indicates that CHC22 actively traffics membranes from the early 

secretory pathway to the LCV, and that this pathway also traffics a subset of proteins 

involved in forming the GSC. 

 

CHC22 interacts with p115 and each influences stability of different partners 

for GLUT4 membrane traffic. 

Previous work implicated the vesicle tether p115 in murine GSC formation in 3T3-L1 

adipocytes by showing an interaction between p115 and IRAP and demonstrating 

that expression of the interacting fragment of p115 had a dominant negative effect on 

the GLUT4 insulin response (Hosaka et al., 2005). Given the high degree of co-

localization between CHC22 and p115 in human cells, we addressed the possibility 

that CHC22 and p115 might also associate. Endogenous CHC22 or CHC17 were 

immunoprecipitated from lysates of HeLa-GLUT4 (Fig. 6 A) or human skeletal 

muscle myotubes (Fig. 6 B) using an antibody highly specific for CHC22 and the 

most specific antibody available for CHC17, which has slight cross-reactivity with 

CHC22.  An association between p115 and CHC22 was detected in both cell lysates 

and p115 was not co-immunoprecipitated with CHC17 (Fig. 6 A and B). As previously 

found (Vassilopoulos et al., 2009), GLUT4 co-immunoprecipitated preferentially with 

CHC22 compared to its association with CHC17 in both types of cells. We also 
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previously showed that, compared to CHC17, CHC22 preferentially co-

immunoprecipitated with the adaptor GGA2 (Dannhauser et al., 2017; Vassilopoulos 

et al., 2009), a reported interactor of sortilin, which is involved in retrograde transport 

of recaptured GLUT4 in murine adipocytes (Pan et al., 2019; Shi et al., 2008; Shi and 

Kandror, 2005; Shi and Kandror, 2007). Here we found that, in both HeLa-GLUT4 

cells and human skeletal muscle myotubes, sortilin specifically co-

immunoprecipitated with CHC22 but not CHC17 (Fig. 6 C and D). CHC22 was not 

isolated by the anti-sortilin monoclonal antibody used, suggesting that the relevant 

epitope of sortilin was not accessible when associated with CHC22. Thus CHC22 

complexes with molecules from both the early secretory pathway and the GLUT4 

retrograde transport pathway. 

 

To address the relationship of the CHC22-p115 complex with other components of 

the GLUT4 trafficking pathway, we assessed the effects of CHC22 and p115 

depletion on each other and on GLUT4 traffic participants, compared to CHC17 

depletion in HeLa-GLUT4 cells. In particular, we focused on the fate of IRAP, sortilin 

and GGA2. These proteins were all found associated with the LCV (Fig. 5 E-H) and 

all three have been implicated in rodent GSC formation, as well as found in 

complexes with each other (Li and Kandror, 2005; Shi et al., 2008; Shi and Kandror, 

2005; Shi and Kandror, 2007; Watson et al., 2004). CHC22 depletion destabilized 

GLUT4, sortilin and GGA2 while p115 and IRAP remained unchanged (Fig. 6 E, F 

and I). Conversely, p115 depletion destabilized IRAP (Fig. 6 F and J) but none of the 

other components. None of the GLUT4 trafficking components were destabilized 

upon CHC17 depletion (Fig. 6 E, F and H), which, as previously observed 

(Dannhauser et al., 2017; Esk et al., 2010; Vassilopoulos et al., 2009), stabilized 

CHC22, likely due to increased membrane association as a result of reduced 

competition for shared adaptors such as GGA2 and AP1. Combining these 

observations with the immunoprecipitation results suggests one minimal complex 
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between CHC22, GGA2, sortilin and GLUT4 and another minimal complex between 

CHC22, p115, IRAP and GLUT4, with the former playing a role in retrograde GLUT4 

sorting and the latter playing a role in sorting newly synthesized GLUT4.  

 

Membrane traffic to the human GSC requires CHC22 and p115, but not GM130. 

To investigate the involvement of the early secretory pathway in sorting GLUT4 

during GSC formation in human cells, we depleted CHC22, p115 or the cis-Golgi 

tether protein GM130 from HeLa-GLUT4 cells using siRNA (Fig. 7 A) and assessed 

the distribution of GLUT4 by confocal microscopy (Fig. 7 B and C). Depletion of p115 

or of CHC22 caused loss of perinuclear GLUT4 and dispersion in the cell periphery, 

with down-regulation of one affecting the distribution of the other (Fig. 7 B). We did 

not detect any impact of GM130 depletion on GLUT4 subcellular distribution, though 

GM130 depletion did partially alter p115 distribution (Fig. 7 C). Since IRAP and 

sortilin were found to associate with p115 and CHC22, we also tested the effects of 

their down-regulation on GLUT4 distribution and observed no obvious effects of 

these treatments (Fig. 7 A, D, E), indicating differences in requirements for IRAP and 

sortilin in targeting GLUT4 in this human model compared to the murine adipocyte 

model.  

 

To determine the functional effects of altering GLUT4 distribution in the HeLa-GLUT4 

cells, we evaluated how depletion of CHC22, p115, GM130, IRAP, and sortilin 

affected insulin-induced GLUT4 translocation, as assessed by FACS analysis (Fig. 8 

A and B). Insulin-stimulated GLUT4 translocation was lost from cells depleted of 

p115 or CHC22 while CHC17 depletion had a partial effect on GLUT4 translocation 

(Fig. 8 A), consistent with previous observations for CHC22 and CHC17 down-

regulation (Vassilopoulos et al., 2009). Corresponding to immunofluorescence 

analyses (Fig. 7 C-E), down-regulation of GM130, IRAP and sortilin (or the 

combination of IRAP and sortilin) did not affect insulin-stimulated GLUT4 
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translocation (Fig. 8 A and B). To confirm that GM130 depletion affected export from 

the Golgi, we demonstrated reduction of alkaline phosphatase secretion from the 

siRNA-treated cells (Tokumitsu and Fishman, 1983) (Fig. S5). These translocation 

assays further indicate that CHC22 and p115 are essential for formation of the 

human GSC and that this process requires membrane traffic from the early secretory 

pathway that bypasses the Golgi.  

 

Discussion 

CHC22 clathrin is required for formation of the insulin-responsive GLUT4 storage 

compartment (GSC) in human muscle and fat (Esk et al., 2010; Vassilopoulos et al., 

2009) and has been implicated in specialized membrane traffic to dense core 

granules in neuronal cells (Nahorski et al., 2018). Both of these roles require 

diversion of intracellular cargo into privileged storage compartments so that the cargo 

is sequestered from degradation. Previous studies indicated a role for CHC22 

clathrin in retrograde transport from endosomes (Esk et al., 2010), where CHC17 has 

been implicated in returning released GLUT4 to the GSC in murine cells (Gillingham 

et al., 1999; Li and Kandror, 2005). However, depletion of CHC22 from human 

muscle cells abrogates GSC formation even in the presence of CHC17 

(Vassilopoulos et al., 2009), so we suspected a second pathway for CHC22 function 

in GLUT4 transport unique to this isoform of clathrin.  We focused on pathways that 

would be involved in biosynthetic formation of the GSC, as evidence suggests that 

GLUT4 arrives at the GSC prior to its expression on the plasma membrane (Watson 

et al., 2004). Discovering strong co-localization of CHC22 with the ERGIC markers 

p115 and ERGIC-53, we investigated a role for CHC22 in formation of the replication 

vacuole of Legionella pneumophila (L.p.), which acquires membrane from the early 

secretory pathway to evade degradative compartments (Derre and Isberg, 2004; 

Kagan and Roy, 2002).  We found that CHC22 was required for bacterial replication 

and formation of the L.p.-containing vacuole (LCV), and that components of the 
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GLUT4 trafficking pathway localized to the LCV, though the presence of GLUT4 itself 

was highly variable. A difference between LCV and GSC formation is a requirement 

for cellular p115. We showed that p115 was needed for human GSC formation, and it 

has previously been implicated in murine GSC formation (Hosaka et al., 2005), but 

L.p. bacteria have an effector protein that replaces p115 (Machner and Isberg, 2006). 

Our studies therefore indicate that human GSC formation requires CHC22-

dependent membrane derived from the ERGIC, in a pathway similar to that co-opted 

by L.p. bacteria. 

 

Tracking newly synthesized GLUT4, using the RUSH system, we observed that 

GLUT4 resides for a longer period of time with markers of the early secretory 

pathway compared to the behavior of constitutively secreted GLUT1 after their 

release from the ER. We also found that while formation of the human GSC was 

sensitive to depletion of p115 and CHC22, GSC formation was not affected by 

depletion of GM130. These data suggest that the CHC22-mediated pathway 

transports GLUT4 to a site where it can be sequestered for generation of insulin-

responsive vesicles and further suggests a Golgi bypass occurs in this step of GSC 

biogenesis. The reported slow maturation of carbohydrate side chains on GLUT4 

compared to GLUT1 is consistent with the proposed Golgi bypass (Hresko et al., 

1994; Hudson et al., 1992). Delayed modification of GLUT4 carbohydrate could 

result from pre-Golgi diversion of most newly synthesized GLUT4 from the ERGIC, 

followed by a process of carbohydrate maturation that depends on GLUT4 secretion 

and recapture through a retrograde pathway (Shewan et al., 2003) where low-level 

carbohydrate modification can occur by Golgi enzymes being recycled to their home 

compartments (Fisher and Ungar, 2016). In our studies, we localized ERGIC 

membrane with CHC22 and/or p115 in close proximity to, but not completely 

overlapping with, compartments containing GLUT4 internalized after insulin-mediated 

release and intracellular compartments marked by STX-6, a TGN marker that co-
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localizes with internalized GLUT4. This is consistent with a biogenesis pathway 

connecting GLUT4 emerging from the ERGIC with the pool of GLUT4 sequestered 

after internalization for reformation of insulin-responsive vesicles. It is also consistent 

with ER/ERGIC-associated proteins being involved in insulin-mediated GLUT4 

release, such as the TUG vesicle tethering protein (Orme and Bogan, 2012) and the 

ER-exit site protein Sec16A (Bruno et al., 2016). Proximity of GLUT4 emerging from 

early secretory compartments with compartments generating insulin-responsive 

GLUT4 vesicles could explain sharing of effector molecules and would also explain 

the general insensitivity of the GSC to BFA disruption, as shown here and earlier 

(Martin et al., 2000). 

 

Our demonstration that CHC22 functions in transport from the early secretory 

pathway defines a membrane traffic step in which the canonical CHC17 clathrin is 

not involved (Brodsky, 2012). We show here that CHC22 co-immunoprecipitates with 

p115 and sortilin and that CHC17 does not, further demonstrating that the two 

clathrins form distinct complexes (Vassilopoulos et al., 2009), localize to distinct 

cellular regions (Liu et al., 2001) and form distinct coated vesicles (Dannhauser et 

al., 2017). It was previously shown that p115 interacts with IRAP (Hosaka et al., 

2005), a protein that binds GLUT4 and is co-sequestered in GLUT4 vesicles (Shi et 

al., 2008) and that expression of a p115 fragment prevents GSC formation in murine 

cells (Hosaka et al., 2005). We show here that p115 down-regulation reduces the 

stability of IRAP. Thus, we propose that CHC22-p115-IRAP interaction occurs in the 

human ERGIC and triggers the coalescence of a protein domain that captures 

GLUT4 for sorting to the GSC (Fig. 8C). Taking into account our earlier 

demonstration of a role for CHC22 in retrograde transport from endosomes and its 

preferential interaction with the endosome-TGN adaptor GGA2 (Dannhauser et al., 

2017; Vassilopoulos et al., 2009) as well as the interaction with sortilin shown here, 

we propose that a second complex involving CHC22, sortilin and GGA2 sorts 
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internalized GLUT4 to the compartment where insulin-responsive vesicles are 

generated (Fig. 8C). Thus, CHC22 clathrin can play a role in sorting both newly 

synthesized and internalized GLUT4 to the human GSC.  

 

GLUT4 membrane traffic has primarily been studied using murine adipocyte and rat 

myoblast cell lines, which do not express CHC22 as a result of gene loss in the 

rodent lineage (Fumagalli et al., 2019; Wakeham et al., 2005). Such studies have 

established that the major pathway for targeting GLUT4 to the GSC in rodent cells 

relies on retrograde transport of GLUT4, via endosomal-TGN sorting, after its release 

to the cell surface from the GSC and uptake by CHC17 (Bryant et al., 2002; Jaldin-

Fincati et al., 2017). Our studies here (Fig. 1) support the existence of this retrograde 

pathway in human cells. It is also reported that in rodent cells GLUT4 reaches the 

GSC prior to its insulin-stimulated release to the cell surface (Lamb et al., 2010; 

Watson et al., 2004), and in rodent cells there is involvement of p115 in GSC 

formation (Hosaka et al., 2005). Thus, both direct targeting and endocytic recapture 

pathways seem to be involved in GSC formation in humans and rodents. In humans 

the CHC22 coat mediates both pathways, but rodents only have the CHC17 coat to 

mediate retrograde sorting. So rodents must rely simply on coalescence of relevant 

cargo (GLUT4, IRAP and p115) in the ERGIC to segregate them from other proteins 

constitutively leaving the secretory pathway and this is likely less efficient, perhaps 

with some GLUT4 directly accessing the cell surface for rapid re-uptake in the 

absence of insulin (Martin et al., 2000). In this case, population of the rodent GSC 

with GLUT4 is mainly a result of the retrograde recycling pathway, in which sortilin 

and IRAP have been shown to participate (Jordens et al., 2010; Pan et al., 2019; Pan 

et al., 2017; Sadler et al., 2019). In the case of human cells, CHC22 can actively 

capture GLUT4 and partners for diversion to the GSC, providing a more robust route 

to GSC formation following biosynthesis, with the GSC also replenished with GLUT4 

by the endocytic-retrograde recycling pathway. The fact that humans have a very 
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stable coat contributing to each sorting step (CHC22 is more stable than CHC17) 

(Dannhauser et al., 2017; Liu et al., 2001), may explain why neither sortilin nor IRAP 

knockdown affected GSC formation in our human model, even if they are functionally 

important cargo for GLUT4 sorting (Fig. 7E and F). The species difference in 

membrane dynamics of GLUT4 traffic has the effect that human cells cannot form a 

GSC with only CHC17 and require both CHC22 pathways. However, the presence of 

CHC22 enhancing biosynthetic GSC formation may have the consequence that 

humans are able to sequester intracellular GLUT4 more efficiently than species 

without CHC22, a trait that may contribute to a tendency to insulin resistance.  

 

Identification of this sorting pathway for GLUT4 from the ERGIC to the GSC adds to 

the variety of sorting pathways that are known to emerge from the ERGIC, sustaining 

both conventional (ER-to-Golgi) (Kondylis and Rabouille, 2003; Sohda et al., 2007) 

and unconventional (Golgi bypass) pathways for autophagy (Ge et al., 2013; Ge and 

Schekman, 2014) or cargo exocytosis (Piao et al., 2017). In humans and even in 

CHC22 transgenic mice, CHC22 expression parallels that of GLUT4, with its highest 

expression in GLUT4-expressing tissues (Hoshino et al., 2013). However, unlike the 

tight regulation of GLUT4 expression, CHC22 is expressed at low levels in additional 

cell types (Nahorski et al., 2015). Thus, the CHC22 sorting pathway emerging from 

the ERGIC that we define here and CHC22-mediated retrograde sorting may also 

operate in tissues that do not express GLUT4 to target yet-unidentified cargo to 

specialized organelles, avoiding the conventional secretory or endocytic pathways. 

 

Materials and Methods 

Plasmids 

The HA-GLUT4-GFP construct was a gift from Dr Tim McGraw (Lampson et al., 

2000). The plasmid encoding human GLUT1 was from OriGene. The haemagglutinin 

(HA-)tag sequence atcgattatccttatgatgttcctgattatgctgag was inserted at base pair 201 
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(between amino acids 67 and 68 of the exofacial loop of GLUT1) using the Q5 site-

directed mutagenesis kit from New England Biolabs (NEB, USA). HA-GLUT4 and 

HA-GLUT1 were extracted using AcsI and EcoRI restriction enzymes and Cutsmart 

buffer from NEB and the agarose gel extraction kit from Qiagen. The inserts were 

then ligated into the RUSH plasmid containing the ER Ii-hook fused to streptavidin, to 

generate the HA-GLUT4-SBP-GFP construct (Boncompain et al., 2012; Boncompain 

and Perez, 2013). In order to generate the HA-GLUT1-SBP-mCherry plasmid, we 

swapped the GFP tag in the HA-GLUT1-SBP-GFP for mCherry, using the SbfI and 

FseI restriction enzymes. The generation of plasmids encoding GFP-tagged CHC22 

and CHC17 has been described elsewhere (Esk et al., 2010). 

 

Cell culture 

All cell lines were maintained at 37°C in a 5% CO2 atmosphere. The HeLa cell line 

stably expressing GLUT4 (HeLa-GLUT4) was generated by transfection of HeLa 

cells with the plasmid encoding HA-GLUT4-GFP (Dawson et al., 2001; Lampson et 

al., 2000; Quon et al., 1994). Transfectants were selected in growth medium 

supplemented with 700 μg/mL G418 then maintained in growth medium with 500 

μg/mL G418. The human skeletal muscle cell line LHCNM2 was described 

elsewhere (Esk et al., 2010; Vassilopoulos et al., 2009; Zhu et al., 2007). A549 

human lung carcinoma cells were obtained from the ATCC. HeLa and A549 cells 

were grown in Dulbecco’s Modified Eagle Medium high glucose supplemented with 

10% FBS (Gibco), 50 U/mL penicillin, 50 μg/mL streptomycin (Gibco), 10 mM Hepes 

(Gibco). LHCNM2 cells were grown in proliferation medium: DMEM MegaCell 

(Sigma) supplemented with 5% FBS (Gibco), 2 mM L-Glutamine (Sigma), 1% non-

essential amino acids (Sigma), 0.05 mM β-mercaptoethanol (Gibco) and 5 ng/mL 

FGF (Thermo Fisher). When full confluency was reached, cells were switched to 

differentiation medium: DMEM (Sigma) supplemented with 2 mM L-Glutamine 

(Sigma), 100 IU penicillin and 100 μg/mL streptomycin (Gibco). The human myoblast 
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cell line AB1190 was immortalized at the platform for immortalization of human cells 

from the Institut de Myologie (Paris). These cells were grown in complete Skeletal 

Muscle Cell Growth Medium (Promocell) supplemented with serum to reach 20% 

final concentration (V/V). These cells were transfected to express HA-GLUT4-GFP 

and permanently transfected myoblasts (hSkMC-AB1190-GLUT4) were selected for 

their ability to differentiate into myotubes. Differentiation of confluent hSkMC-AB1190 

myoblasts and hSkMC-AB1190-GLUT4 myoblasts was induced by incubating the 

cells in differentiation medium for 6 to 7 days: DMEM (Gibco), Gentamycin 50 μg/ml 

(Gibco) + insulin 10 μg/ml (Sigma). All cell lines used were tested negative for 

mycoplasma infection. 

 

Small RNA interference 

Targeting siRNA was produced (Qiagen) to interact with DNA sequences 

AAGCAATGAGCTGTTTGAAGA for CHC17 (Esk et al., 2010), 

TCGGGCAAATGTGCCAAGCAA and AACTGGGAGGATCTAGTTAAA for CHC22 

(1:1 mixture of siRNAs were used)(Vassilopoulos et al., 2009) and 

AAGACCGGCAATTGTAGTACT for p115 (Puthenveedu and Linstedt, 2004). 

Targeting siRNA against sortilin and IRAP were purchased from OriGene 

(SR304211, SR302711, respectively). Non-targeting control siRNA was the Allstars 

Negative Control siRNA (Qiagen). siRNA targeting GM130 and scrambled negative 

control siRNA were purchased from OriGene. For siRNA treatments, cells were 

seeded (10,000 cells/cm2) in 6- or 24-well plates in culture medium. The next day, 

the cells were transfected with siRNAs complexed with JetPrime (PolyPlus). For 

targeting CHC17, p115 and GM130, 20 nM of siRNA was used per treatment. For 

targeting CHC22, 20 nM of siRNA was used per treatment, except for Western blot 

experiments in Figure 6 where 40 nM of siRNA were used. For IRAP and sortilin 

knockdowns, 30 and 40 nM of siRNA were transfected, respectively. Six hours after 

siRNA transfection, cells were returned to normal growth conditions and then 
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harvested for analysis or fixed for imaging 72 h later. Silencing was assessed by 

immunoblotting. 

 

Transfection 

For transient DNA transfection, cells were seeded (21,000 cells/cm2) in 24-well plates 

in culture medium. The next day, the cells were transfected with plasmid DNA 

complexed with JetPrime (PolyPlus) in a 1:2 mixture (DNA/JetPrime). For RUSH 

experiments, 0.5 g of DNA was used. 0.25 g of DNA was used for all other 

experiments. 6 h after DNA transfection, cells were returned to normal growth 

conditions and then fixed for imaging 24 h later.  

 

Antibodies and reagents 

Primary antibody concentrations ranged from 1-5 μg/mL for immunoblotting and IF 

assays. Mouse monoclonal anti-CHC17 antibodies (TD.1 (Nathke et al., 1992) and 

X22 (Brodsky, 1985)), and affinity-purified rabbit polyclonal antibody specific for 

CHC22 and not CHC17 (Vassilopoulos et al., 2009) were produced in the Brodsky 

laboratory. Mouse monoclonal anti-p115 antibody (clone 7D1) has been described 

(Waters et al., 1992). Mouse monoclonal anti-GGA2 was a gift from Dr Juan 

Bonifacino (US National Institutes of Health, Bethesda, MD, USA). Rabbit polyclonal 

antibody anti-L.p. was a gift from Dr Craig Roy (Yale University, New Haven, CT, 

USA). Mouse monoclonal antibody anti-L.p. was made in the Mukherjee lab. 

Commercial sources of antibodies were as follows: Rabbit polyclonal anti-CHC17 

(Abcam), rabbit polyclonal anti-CHC22 antibody (Proteintech), mouse monoclonal 

anti-β-COP (clone maD, Sigma), rabbit polyclonal anti-IRAP (#3808, Cell Signaling 

Technology), rabbit monoclonal anti-IRAP (clone D7C5, #6918, Cell Signaling 

Technology), rabbit polyclonal anti-phospho AKT Ser473 (#9271, Cell Signaling 

Technology), rabbit polyclonal anti-phospho-AS160 Thr642 (#4288, Cell Signaling 

Technology), rabbit polyclonal anti-AS160 (#2447, Cell Signaling Technology), goat 
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polyclonal anti-GLUT4 (C-20, Santa-Cruz Biotechnologies), Rabbit anti-GLUT4 

(Synaptic Systems), mouse monoclonal anti-calreticulin (clone FMC75, Stressgen 

Bioreagents), sheep polyclonal anti-TGN46 (AHP500G, Biorad), goat polyclonal anti-

GM130 (P-20, Santa-Cruz Biotechnologies), sheep polyclonal anti-Sec22b 

(AHP500G, Creative Diagnostics), mouse monoclonal anti-ERGIC-53 (clone 2B10, 

OriGene), rabbit polyclonal anti-ERGIC-53 (E1031, Sigma), rabbit monoclonal anti-

LMAN1 (clone EPR6979, Abcam), rabbit polyclonal anti-sortilin (ab16640, Abcam), 

Rabbit polyclonal anti-sortilin (12369-1-AP, Proteintech), mouse monoclonal anti-

sortilin (clone EPR15010, ab188586, Abcam), mouse monoclonal anti-STX-6 (clone 

30/Syntaxin 6, Becton Dickinson), mouse monoclonal anti-β actin (clone AC-15, 

Sigma), mouse monoclonal anti-HA (clone 16B12, Covance), mouse monoclonal 

anti-MHCI W6/32 (produced from the hybridoma in the Brodsky lab) has been 

described (Barnstable et al., 1978), goat polyclonal anti-Rab1 (orb153345, Biorbyt), 

chicken anti-GFP (A10262, Invitrogen). The commercial anti-CHC22 from 

Proteintech was confirmed in our laboratory to be specific for CHC22 and not CHC17 

(Fig. S1 A). For IF, secondary antibodies coupled to FITC, Alexa Fluor 488, Alexa 

Fluor 555, Alexa Fluor 562 or to Alexa Fluor 647 (Thermo Fisher) were used at 

1:500. For Western blotting, antibodies coupled to HRP (Thermo Fisher, Biorad) 

were used at 1:10,000. Brefeldin A (BFA) was from Sigma.  

 

Legionella pneumophila 

WT and ΔdotA Legionella strains were gifts from Dr Craig Roy’s (Yale University). 

The parental strain (wild type) was L.p. serogroup 1 strain L.p.01, and the variant 

strain ΔdotA were isogenic mutants described previously (Berger et al., 1994; 

Zuckman et al., 1999). Single colonies of L.p. were isolated from charcoal yeast 

extract plates after growth for 2 days at 37ºC. DsRed-expressing WT L.p. were 

grown on charcoal yeast extract plates containing 500 M isopropyl+- o-
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thiogalactopyranoside (IPTG) for 2 days at 37ºC to induce expression of the 

fluorescent protein. 

 

Infection and analysis of replicative vacuoles  

A549 cells were seeded 105 cells per 2 cm2 on coverslips. Cells were infected at a 

multiplicity of infection (MOI) of 25 with WT or ΔdotA L.p. strains. Immediately after 

adding L.p. to the medium, cells were centrifuged at 400 x g for 15 min, then left at 

37ºC for an additional 45 min. Cells were then washed 3X with PBS and incubated in 

growth medium for the indicated time. To analyse replicative vacuoles, cells were 

directly infected with WT or ΔdotA L.p. at a MOI of 50 for 1h for labelling with 

antibodies or transfected with siRNA (20 nM) or with plasmids encoding HA-GLUT4-

GFP, CHC22-GFP or CHC17-GFP 72h before infection. Infected cells (transfected or 

not transfected) were incubated for 8h post-infection, then washed 3X with PBS, 

fixed with 2.5% paraformaldehyde (PFA) for 30 min and labelled with antibody to 

detect bacteria for counting the number per replicative vacuole and with antibodies to 

identify compartment markers. 

 

Immunofluorescence 

Cells grown on 1.5# glass coverslips (Warner Instruments) were washed (PBS, 4oC), 

fixed (2-4% PFA, 30 min, 4oC), permeabilized and blocked (PBS 0.5% saponin, 2% 

bovine serum albumin) for 1 hour at room temperature (RT). Cells were then 

incubated with primary antibodies (overnight, 4ºC), washed (5X, PBS, 4oC) and 

incubated with species-specific secondary antibodies coupled to fluorophores 

(Thermo Fisher). Cells were then washed (5X, PBS, 4oC) and coverslips mounted on 

microscope slides using Prolong Antifade Diamond kit (Thermo Fisher). Samples 

were imaged using a Leica TCS SP8 inverted laser scanning confocal microscope 

equipped with two high sensitivity (HyD) detector channels and one PMT detector 

channel, a 63X (1.40 NA) HC Plan-Apo CS2 oil-immersion objective and five laser 
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lines. Dyes were sequentially excited at 405 nm (DAPI), 488 nm (GFP, Alexa Fluor 

488), 543 nm (Alexa 555), 561 nm (Alexa 568), and 633 nm (Alexa 647). Multicolor 

images (1024 x 1024 pixels) were saved as TIFF files in Leica LAS X Software 

(Leica) and input levels were adjusted using ImageJ (US National Institutes of 

Health, NIH). Labelling detected in individual channels is shown in black and white in 

figure panels. Merged images are presented in pseudo-color as described in the 

legends. Image quantification was performed using ImageJ. For each cell, individual 

marker fluorescence was measured in separate channels, and signals were adjusted 

to their dynamic ranges. Degree of marker overlap in individual cells was determined 

by Pearson’s correlation coefficients.  

 

Structured Illumination Microscopy (SIM) 

Sample preparation (fixation and staining) steps were identical to confocal 

microscopy. Sample acquisition was performed on a Zeiss Elyra PS.1 microscope 

(Axio Observer.Z1 SR, inverted, motorized) through a 100X alpha Plan-Apochromat 

DIC M27 Elyra lens (oil-immersion, 1.46 NA). Fluorophore excitation was performed 

with a 50 mW HR diode emitting at 350 nm (BP 420-480/LP 750 filter), and a 200 

mW HR diode emitting at 488 nm (BP 495-550/LP 750 filter), a 200 mW HR Diode 

Pumped Solid State laser emitting at 561 nm (BP 470-620/LP 750 filter) and a 260 

mW HR diode emitting at 642 nm (LP 655 filter). Acquisition was performed using a 

pco.egde sCMOS camera and post-acquisition processing (channel alignment) was 

performed on the ZEN Black software Version 11.0.2.190. 

 

GLUT4 internalization experiments 

The GLUT4 internalization protocol was adapted from previous work (Foley and Klip, 

2014). HeLa-GLUT4 cells were seeded on coverslips in 24-well plate and grown to 

80% confluency. On the day of the experiment, cells were washed (3X, PBS, 37oC) 

and serum starved 2 hours. Cell surface HA-GLUT4-GFP was labelled on ice for 30 
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min with mouse monoclonal anti-HA antibody. After washing (5X, PBS, 4oC), cells 

were placed in serum-free medium (37oC) for indicated times. Cells were then 

washed (3X, PBS, 4oC), fixed and processed for immunofluorescence detection of 

internalised anti-HA antibody. 

 

GLUT4 translocation assay using flow cytometry 

HeLa-GLUT4 cells were seeded in 6-well plates and grown to 95% confluency. On 

the day of experiment, cells were washed (3X, PBS, 37oC), serum-starved (2 hours), 

then treated with insulin to a final concentration of 170 nM or the same volume of 

vehicle (water) diluted in serum-free medium for 15 minutes, 37°C. Cells were then 

placed on ice and rapidly washed (3X, PBS, 4°C) and fixed (PFA 2.5%, 30 min). 

After fixation, cells were washed (3X, PBS, RT) then blocked for 1 hour (PBS 2% 

BSA, RT) before incubation with monoclonal anti-HA antibody (45 min, RT) to detect 

surface GLUT4. After incubation, cells were washed (5X, PBS, RT) and incubated 

with Alexa Fluor 647-anti-mouse Ig (45 min, RT). Cells were then washed (5X, PBS, 

RT), gently lifted using a cell scraper (Corning), pelleted (200xg, 10 min) and re-

suspended (PBS, 2% BSA, 4°C). Data was acquired with Diva acquisition software 

by LSRII flow cytometer (Becton Dickinson) equipped with violet (405 nm), blue (488 

nm) and red (633 nm) lasers. Typically, 10,000 events were acquired and Mean 

Fluorescence Intensity (MFI) values for surface GLUT4 (Alexa Fluor 647) and total 

GLUT4 (GFP) were recorded using 660/20 and 530/30 filters, respectively. Post-

acquisition analysis was performed using FlowJo software (Treestar) where debris 

were removed by FSC/SSC light scatter gating then fluorescence histograms were 

analyzed. The ratio of surface to total MFI was calculated to quantify the extent of 

GLUT4 translocation.  

 

Translocation assay using immunofluorescence 
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To test the effect of insulin and CHC22 depletion on the surface expression of 

endogenous Class I MHC molecules, cells were treated with siRNA targeting CHC22 

or with control siRNA (as elsewhere in the Methods) then serum starved (1h, 37ºC) 

before insulin stimulation (15 minutes, 170 nM, 37ºC). Cells were then placed on ice, 

washed (PBS, 4ºC) and incubated with primary antibodies (1h, 4ºC), then washed 

(PBS, 4oC), fixed (2.5% PFA, 30 min, 4oC), washed (PBS, 4ºC) and incubated with 

fluorescent secondary antibodies (30 min, 4ºC). Cells were then washed (5X, PBS, 

4oC) and coverslips were mounted on microscope slides using Prolong Antifade 

Diamond mounting medium (Thermo Fisher). 

 

RUSH assay 

HeLa cells were seeded at 30,000 cells/cm2 on coverslips. The next day, cells were 

transfected with 0.5 g of HA-GLUT1-SBP-GFP or HA-GLUT4-SBP-GFP plasmids 

for 6h, then switched to fresh medium. The next day, cells were treated with 40 M 

biotin for the indicated times. Cells were then quickly placed on ice, washed (3X, 

PBS, 4oC), fixed (2.5% PFA, RT) and processed for immunofluorescence. For 

videomicroscopy acquisitions, cells were transfected simultaneously with HA-GLUT1-

SBP-mCherry (2 µg) and HA-GLUT4-SBP-GFP (2 µg) following protocol described 

elsewhere (Jordan et al., 1996) and imaged on a spinning disk confocal microscope. 

 

Alkaline phosphatase secretion assay 

HeLa-GLUT4 cells were seeded in 96-well plates, grown to 80% confluency and 

were transfected the next day with 20 nM targeting or control siRNA. After 48h, cells 

were transfected with the plasmid encoding secreted alkaline phosphatase. After 

24h, fresh medium was added to the culture and 8h later, the media were harvested 

and the cells lysed. Alkaline phosphatase activity in the harvested medium and cell 

lysate was assessed using the Phospha-Light System kit (Applied Biosystems), 
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following the manufacturer’s instructions and detected with a luminometer (Varioskan 

LUX multimode multiplate reader, Thermo Fisher scientific). The alkaline 

phosphatase secretion index was determined by calculating the ratio of alkaline 

phosphatase activity detected in the medium (secreted) to total alkaline phosphatase 

activity in the culture (medium plus cell lysate activity). 

 

Brefeldin A treatment 

HeLa-GLUT4 or LHCNM2 myoblasts were grown on coverslips and exposed to BFA 

(10 µg/mL, 1h, 37°C) or vehicle (DMSO) in starvation medium (DMEM only). During 

the last 15 minutes, cells were incubated with insulin (170 nM, 15 minutes) or vehicle 

(water). Cells were then washed (3X, PBS, RT) and processed for 

immunofluorescence. 

 

Preparation of clathrin-coated vesicles (for anti-CHC22 characterization)  

Clathrin coated vesicles (CCV) preparation was adapted from Keen et al. (Keen et 

al., 1979). Briefly, pig brains were blended in buffer A (100mM MES, 1mM EDTA, 0.5 

mM MgCl2) supplemented with 0.5 mM PMSF. The preparation was centrifuged at 

8,000 rpm (JA-17 rotor, Beckman) at 4°C for 30 min, then the supernatant was 

filtered to remove particles and centrifuged at 40,000 rpm (45 Ti rotor, Beckman) at 

4°C for 60 min to pellet the CCVs. A small volume of buffer A supplemented with 

0.02 mM PMSF was added to the CCV pellets before homogenization with a potter S 

homogenizer. A solution of 12.5% Ficoll 12.5% sucrose was added 1:1 to the CCV 

suspension and gently mixed. The CCV preparation was then centrifuged at 15,000 

rpm (JA-17 rotor, Beckman) at 4°C for 40 min. The supernatant was collected, 

diluted 5-fold in buffer A supplemented with 1 mM phenylmethane sulfonyl fluoride 

(PMSF) and centrifuged 40,000 rpm (45 Ti rotor, Beckman) for 60 min at 4°C to 

pellet vesicles. The pellet was resuspended in buffer A for Tris extraction. Finally, the 
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preparation was purified by gel filtration (Superose 6, GE Life Science). CCV were 

stored at -80ºC in 10 mM Tris–HCl, pH 8.0.  

 

Purification of hub CHC22 (for anti-CHC22 characterization) 

Hub CHC22 fragment was produced in BL21(DE3) bacteria (Novagen) by induction 

with 1 mM IPTG for 24 hr at 12°C. Bacterial pellets were resuspended in LysI (1M 

NaCl pH=8, 20 mM imidazole in PBS) supplemented with 1 mM PMSF, protease 

inhibitors (1 tab/10 mL, Roche), 40 μg/mL lysozyme, 0.1% -mercaptoethanol 

(Sigma). Then LysII (1M NaCl, 0.5M guanidine HCl, 0.4% Triton X100 in PBS) was 

added at 1:1.25 (LysI:LysII) ratio and samples were spun at 40,000 rpm for 30 min at 

4°C. Supernatant was ran through a Ni+ affinity NTA column, then washed with LysI 

and eluted with 1M NaCl pH8, 0.5M imidazole in PBS. 

 

Immunoblotting 

Protein extracts from cells were quantified by BCA (Pierce), separated by SDS-

PAGE (10% acrylamide), transferred to nitrocellulose membrane (0.2 μm, Biorad) 

and labelled with primary antibodies (1-5 μg/mL), washed and labelled with species-

specific horseradish peroxidase-conjugated secondary antibodies (Thermo Fisher). 

Peroxidase activity was detected using Western Lightning Chemiluminescence 

Reagent (GE Healthcare). The molecular migration position of transferred proteins 

was compared to the PageRuler Prestain Protein Ladder 10 to 170 kDa (Thermo 

Fisher Scientific). Signal quantification was performed using Image J software (NIH).  

 

Immunoprecipitation 

Confluent cells from a 500 cm2 plate were scraped off the plate, washed in ice-cold 

PBS and pelleted (300 g, 8 min, 4ºC). The pellets were resuspended in ice-cold lysis 

buffer (NaCl 150 mM, HEPES 20 mM, EDTA 1 mM, EGTA 1 mM, Glycerol 10% 

(V/V), NP-40 0.25% (V/V)) supplemented with protease (1 tab/10mL, Roche) and 
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phosphatase (Na4VO3 2 mM) inhibitors. Cell suspensions were mechanically sheared 

(over 25 passages through a 27G needle), sonicated and centrifuged (500 g for 10 

min, 4ºC) to remove nuclei. Five to 10 µg of specific anti-CHC22 (Proteintech) and 

CHC17 (X22) antibodies were incubated with 7 mg of pre-cleared post-nuclear 

supernatants (overnight, 4ºC). The samples were then incubated with washed protein 

G sepharose (PGS, 25 µL, GE Healthcare) for 1h (4ºC) before three consecutive 

washing steps in lysis buffer. Pelleted PGS were resuspended in 30 µL of 1X 

Laemmli sample buffer and subjected to SDS- PAGE and immunoblotting. Species-

specific HRP-conjugated Trueblot secondary antibodies (Rockland) were used for 

immunoblotting IP experiments. 

 

Statistical analyses 

All calculations and graphs were performed with Microsoft Excel and GraphPad 

Prism softwares. P-values were calculated using unpaired two-tailed Student’s t-tests 

or two-way ANOVA followed by Tukey, Dunnett, Bonferroni or Sidak’s multiple 

comparisons test. Detailed statistical information including statistical test used, 

number of independent experiments, p values, definition of error bars is listed in 

individual figure legends. All experiments were performed at least three times, except 

for the immunoblots shown in Figs. 1 B and 7 A and the infection experiment shown 

in Fig. S4 D, which were performed twice. Immunofluorescence stainings showed in 

Figs. S3 A, B were performed once. 

 

Summary of Supplemental material  

This manuscript contains 2 videos and 5 supplemental figures (Fig. S1-S5).  
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Figure Legends 

Figure 1: HeLa-GLUT4 cells have a functional GLUT4 trafficking pathway that 

requires CHC22. 

(A) Representative images of GLUT4 (exofacial haemagglutinin (HA)-tag, internal 

GFP tag) in HeLa-GLUT4 cells before (basal) or after insulin treatment. GLUT4 at the 

plasma membrane was detected by immunofluorescence (IF) after surface labeling 

with anti-HA monoclonal antibody (red). Total GLUT4 (green) was detected by GFP 

tag. Arrows show the GLUT4 storage compartment. Arrowheads point to peripheral 

GLUT4 vesicles. Scale bars: 7.5 μm. (B) Left panel – Representative FACS 

histogram of surface GLUT4 fluorescence intensities (signal from anti-HA labeling) 

before (basal) and after insulin treatment (Ins). Middle panel – Quantification of 

surface:total GLUT4 (HA:GFP mean fluorescence intensity signals). Data expressed 

as mean ± SEM, N=3, 10,000 cells acquired per experiment. Two-tailed unpaired 

Student’s t-test with equal variances, **p<0.01. Right panel – Representative 

immunoblot for phosphorylated AKT (p-AKT), phosphorylated AS160 (p-AS160), total 

AS160 and β-actin in HeLa-GLUT4 cells before and after insulin treatment. The 

migration position of molecular weight (MW) markers is indicated at the left in 

kilodaltons (kDa). (C) Representative images of total GLUT4 (GFP tag, green) and 

Major Histocompatibility Complex I molecules (MHCI, blue) before (basal) or after 

insulin treatment in HeLa-GLUT4 cells transfected with non-targeting control siRNA 

(siControl) or siRNA targeting CHC22 (siCHC22). Scale bars: 8 µm. (D) 

Representative FACS histograms of surface GLUT4 fluorescence intensity (signal 

from anti-HA labeling) in HeLa-GLUT4 cells transfected with siControl or siRNA 

siCHC22 before (red) or after treatment with insulin (blue). Histograms are extracted 

from the experiment quantified in Fig. 8 A. (E) Representative IF staining for 

internalized surface-labeled GLUT4 (HA-tag, blue) and syntaxin 6 (STX-6, red) for 

HeLa-GLUT4 cells at 0, 10 or 30 minutes after insulin treatment. Total GLUT4 is 

detected by GFP tag (green). Scale bars: 7.5 μm. (F) Pearson’s overlap 
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quantification for labeling of STX-6 and HA-tag (Data expressed as mean ± SEM, 

N=3, 14-19 cells per experiment). One-way analysis of variance (ANOVA) followed 

by Bonferroni’s multiple comparison post-hoc test ****p<0.0001. (G) Left panel – 

representative Structured Illumination Microscopy (SIM) image of a HeLa-GLUT4 cell 

stained for STX-6 (red). Total GLUT4 (green) was detected by GFP tag. The gray 

circle delineates the nucleus (N) and the white square delineates the magnified area 

displayed in the right panel image. Scale bar: 10 μm. Right panel – the white dashed 

line in the magnified area spans the segment for which fluorescence intensities for 

GLUT4 and STX-6 are plotted below, in green and red, respectively. Arrowheads 

indicate areas of overlap. (H) Representative IF staining for CHC17 (red) and CHC22 

(blue) in HeLa-GLUT4 cells transfected with non-targeting siControl or siRNA 

targeting CHC17 (siCHC17) or siCHC22, with GLUT4 detected by GFP tag (green). 

Arrows point to a CHC22-depleted cell. Scale bars: 10 μm for siControl and siCHC17 

and 7.5 μm for siCHC22. Merged images in (A), (C), (E), (G), (H) show red/green 

overlap in yellow, red/blue overlap in magenta, green/blue overlap in turquoise, and 

red/green/blue overlap in white. 

 

Figure 2: Newly synthesized GLUT4 is delayed in the early secretory pathway 

compared to GLUT1. 

(A) Representative stills extracted from Video 1 showing a HeLa cell expressing the 

endoplasmic reticulum (ER) Ii-hook fused to streptavidin along with HA-GLUT1-SBP-

mCherry (GLUT1, red) and HA-GLUT4-SBP-GFP (GLUT4, green). The intracellular 

traffic of GLUT1-mCherry and GLUT4-GFP was simultaneously tracked for 1h after 

biotin addition released them from the ER. Upon ER exit, both GLUT1 and GLUT4 

accumulated in the perinuclear region of the cell (yellow). From 26 min onwards, 

highly mobile GLUT1 vesicles (arrowheads) were visible (red) while GLUT4 

remained perinuclear. Scale bar: 10 µm.  (B, D, F, H, J) Representative 

immunofluorescence staining for GLUT1-SBP-GFP or GLUT4-SBP-GFP (detected 
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with anti-GFP antibody, green), CHC22 (red) and (B) calnexin (CNX, blue), (D) 

ERGIC-53 (blue), (F) p115 (blue), (H) GM130 (blue) or (J) TGN46 (blue) in HeLa 

cells expressing HA-GLUT1-SBP-GFP or HA-GLUT4-SBP-GFP along with the ER Ii-

hook. Traffic of GLUT4 and GLUT1 was tracked at 0, 15, 30 and 60 minutes after 

release from the ER by biotin. Arrows point to GLUT1 detected at the plasma 

membrane and arrowheads point to GLUT1-positive endosomal structures. Merged 

images show red/green overlap in yellow, red/blue overlap in magenta, green/blue 

overlap in turquoise, and red/green/blue overlap in white. Scale bars: 10 μm. (C, E, 

G, I, K, L) Pearson’s overlap between GLUT1 or GLUT4 and CNX, ERGIC-53, p115, 

GM130, TGN46 or CHC22 at different time-points post-ER release. Data expressed 

as mean ± SEM, N=3-4, 10-46 cells per experiment. One-way analysis of variance 

(ANOVA) followed by Sidak’s multiple comparison post-hoc test *p<0.05, **p<0.01, 

****p<0.0001 to test differences between GLUT1 and GLUT4 overlap with markers at 

each time points. (M) Pearson’s overlap between CHC22 and GLUT4, ER marker 

calreticulin, ERGIC markers p115 and ERGIC-53, cis-Golgi marker GM130 or trans-

Golgi marker TGN46 in HeLa-GLUT4 from images taken by confocal microscopy 

(corresponding representative immunofluorescence staining in Fig. S1). Data 

expressed as mean ± SEM, N=3, 4-10 cells across 3 independent samples. 

 

Figure 3: CHC22 is localized at the ER-to-Golgi Intermediate Compartment in 

HeLa GLUT4 and human myotubes. 

(A and B) Representative Structured Illumination Microscopy of a HeLa-GLUT4 cell  

(HeLa-G4) (A) and the human skeletal muscle cell line hSkMC-AB1190-GLUT4 

(hSkMC) (B) stained for CHC22 (red) and p115 (blue). The gray circles delineate the 

nuclei (N). Muscle cell staining with each antibody is shown in black on white below 

the color images. Scale bars: 10 μm. (C and D) Representative Structured 

Illumination Microscopy of the perinuclear region of HeLa-GLUT4 cells and hSkMC-

AB1190-GLUT4 stained for CHC22 (red) and p115 (C), ERGIC-53 (blue) (D). The 
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solid gray lines delineate the nuclear border (N). The dashed white lines span the 

segment for which fluorescence intensities for GLUT4 (green), CHC22 (red) and 

p115, ERGIC-53 (blue) were plotted. Arrowheads indicate areas of peak overlap. 

Scale bars: 1 μm. In A, B, C and D, GLUT4 (green) was detected by GFP tag in 

HeLa-GLUT4 or immunostained with anti-GFP antibody in hSkMC-AB1190-GLUT4. 

Merged images in (A, B and C) show red/green overlap in yellow, red/blue overlap in 

magenta, green/blue overlap in turquoise, and red/green/blue overlap in white. 

 

Figure 4: The CHC22 compartment is localized proximal to the trans-Golgi 

Network and does not overlap with the cis-Golgi. 

(A, B and C) Representative Structured Illumination Microscopy of the perinuclear 

region of HeLa-GLUT4 cells (HeLa-G4) and hSkMC-AB1190-GLUT4 (hSkMC) 

stained for CHC22 (red) and GM130 (A), TGN46 (B) and syntaxin 6 (STX-6, blue) 

(C). The solid gray lines delineate the nuclear border (N). The dashed white lines 

span the segment over which fluorescence intensities for GLUT4 (green), CHC22 

(red) and GM130, TGN46 and STX-6 (blue) were plotted. Scale bars: 1 μm. In A, B 

and C, GLUT4 (green) was detected by GFP tag in HeLa-GLUT4 in HeLa-GLUT4 or 

immunostained using an anti-GFP antibody in hSkMC-AB1190-GLUT4. Merged 

images in (A, B and C) show red/green overlap in yellow, red/blue overlap in 

magenta, green/blue overlap in turquoise, and red/green/blue overlap in white. 

 

Figure 5: CHC22 and proteins involved in the GLUT4 pathway participate in 

membrane trafficking from the ERGIC. 

(A) Representative images of Legionella pneumophila (L.p.)-infected A549 cells 

transiently transfected with GFP-tagged CHC22 or CHC17 (green). One hour after 

infection with either wild type (WT) or mutant ΔdotA L.p. (MOI=50), bacteria were 

detected by immunofluorescence (IF, red). Arrows point to L.p. and boxed inserts 
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(upper right or left) show L.p. region at 5X magnification. Scale bars: 10 μm for cells 

expressing CHC22-GFP and 7.5 μm for cells expressing CHC17-GFP. (B) 

Quantification of the proportion of L.p. vacuoles positive for CHC22 or CHC17. Data 

expressed as mean ± SEM, N=3, 4 to 35 vacuoles counted per experiment 

performed as represented in (A). One-way analysis of variance (ANOVA) followed by 

Bonferroni’s multiple comparison post-hoc test ***p<0.001. (C) Representative 

images of A549 cells infected with WT L.p. (MOI=50) immunolabeled for endogenous 

CHC22 or CHC17 (red) and L.p. (green) by IF. Arrows point to L.p., dashed lines 

delineate cell borders. Scale bar: 5 μm. (D) Quantification of the proportion of 

replicative vacuoles (8 hours post-infection) containing 1, 2 to 4, or more than 4 WT 

or ΔdotA L.p. after treatment with siRNA targeting CHC22 (siCHC22) or CHC17 

(siCHC17) or non-targeting siRNA (siControl). Data expressed as mean ± SEM, N=3, 

over 140 vacuoles counted per experiment. One-way ANOVA followed by 

Bonferroni’s multiple comparison post-hoc test was performed to compare the 

number of cells with a vacuole containing more than 4 bacteria. ****p<0.0001 versus 

siControl-transfected cells infected with WT L.p.. ++++p<0.0001 versus siControl-

transfected cells infected with ΔdotA L.p.  (E) Quantification of the proportion of L.p. 

vacuoles positive for GLUT4-GFP, p115, GGA2, sortilin, IRAP or Rab1 1h after 

infection with WT or ΔdotA L.p. in HeLa cells transiently expressing FcRII (needed 

for L.p. infection) (Arasaki and Roy, 2010). Data expressed as mean ± SEM, N=3, 4 

to 50 vacuoles counted per experiment. Two-tailed unpaired Student’s t-test with 

equal variances: *p<0.05, **p<0.01, ***p<0.001. (F-I) Representative 

immunofluorescence of HeLa cells one hour after infection with either wild type (WT) 

or mutant ΔdotA L.p. (MOI=50) stained for L.p. (red) and sortilin (F), IRAP (G), 

GGA2 (I), or p115 (green) (I). Hoechst stains the nuclei (blue). Arrows point to L.p.-

containing vacuoles, Scale bars: 10 μm. Merged images in (A), (C), (F-I) show 

red/green overlap in yellow. 
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Figure 6: CHC22 interacts with p115 and each influences stability of different 

partners involved in GLUT4 membrane traffic. 

 (A-D) Representative immunoblots of immunoprecipitates of CHC22, CHC17 (A-D) 

or Sortilin (C and D) from HeLa-GLUT4 cells (A and C) and hSKMC-AB1190 (B and 

D) immunoblotted for CHC22, CHC17, p115, GLUT4 and Sortilin. The position of 

molecular weight (MW) markers is indicated in kilodaltons (kDa). 

(E-G) Representative immunoblots of HeLa-GLUT4 cells transfected with siRNA 

targeting CHC22, CHC17 (E, F) or p115 (F, G) or with non-targeting control siRNA 

(40 nM for 72h) showing levels of CHC22, GLUT4, GGA2, CHC17, p115, sortilin and 

-actin (E, G) or levels of IRAP and -actin (F). The position of molecular weight 

(MW) markers is indicated in kilodaltons (kDa). (H-J) Quantifications of immunoblot 

signals as shown in (E-G). Blot signals were normalized to -actin for each 

experiment and the fold change (negative values indicate decrease and positive 

values indicate increase) relative to the normalized signal in control siRNA-treated 

cell lysates is plotted. Data expressed as mean ± SEM, N=7-8. Two-tailed unpaired 

Student’s t-test, with Welch’s correction where variances were unequal: *p<0.05; 

***p<0.001, ****p<0.0001.  

 

Figure 7: Depletion of CHC22 or p115, but not GM130, sortilin or IRAP disrupt 

perinuclear targeting of GLUT4. 

(A) Immunoblotting for CHC22, CHC17, p115, GM130 and -actin after transfection 

of HeLa-GLUT4 cells with siRNA targeting CHC17, CHC22, p115, GM130, sortilin, 

IRAP or with non-targeting control siRNA. The position of molecular weight (MW) 

markers is indicated in kilodaltons (kDa). (B) Representative immunofluorescence 

(IF) staining for CHC22 (red) and p115 (blue) in HeLa-GLUT4 cells after siRNA 

transfection as in (A), with GLUT4 detected by GFP tag (green). N, nuclei. Arrow 
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points to CHC22-depleted cell. Scale bars: 10 μm. (C) Representative IF staining for 

GM130 (yellow), p115 (red) and CHC22 (blue) in HeLa-GLUT4 cells after treatment 

with siRNA targeting GM130 or with control siRNA, with GLUT4 detected by GFP tag 

(green). Individual antibody staining is shown in black and white, while the merged 

image shows all four colors with overlaps in white. Scale bars: 25 μm. (D and E) 

Representative IF staining for GLUT4 (green), CHC22 or sortilin (red) and p115 

(blue) in HeLa-GLUT4 cells after treatment with siRNA targeting sortilin or IRAP or 

with non-targeting control. Scale bars: 5 μm. Merged images show red/green overlap 

in yellow, red/blue overlap in magenta, green/blue overlap in turquoise, and 

red/green/blue overlap in white. 

 

Figure 8: Formation of the human insulin-responsive GLUT4 pathway involves 

membrane traffic from the ERGIC and supports a model for two routes to 

GLUT4 sequestration.    

 (A and B) Insulin-stimulated GLUT4 translocation in HeLa-GLUT4 cells as quantified 

by FACS analysis of surface:total GLUT4. Cells were pre-treated with siRNA 

targeting CHC22, CHC17, p115, GM130, sortilin, IRAP, sortilin plus IRAP, or with 

non-targeting control siRNA (siCon) as in Fig. 7 A, then incubated with (+) or without 

(-) insulin. For the experiments in (A), data is expressed as mean ± SEM, N=9, 

10,000 cells acquired per experiment. One-way ANOVA followed by Bonferroni’s 

multiple comparison post-hoc test **p<0.01, ***p<0.001, ****p<0.0001 versus 

untreated (-). For the experiments in (B), data is expressed as mean ± SEM, N=7, 

10,000 cells acquired per experiment. One-way ANOVA followed by Bonferroni’s 

multiple comparison post-hoc test *p<0.05, **p<0.01, ***p<0.001 versus untreated. 

(C) Proposed model for the roles of CHC22 in the human GLUT4 pathway. Newly 

synthesized GLUT4 traffics from the endoplasmic reticulum (ER) to the ER-to-Golgi 

Intermediate Compartment (ERGIC). At the ERGIC, a complex forms between IRAP 

and p115 that promotes binding of CHC22 clathrin and sequesters GLUT4 through 



 42 

its IRAP interaction (Shi et al., 2008) (box A). Formation of the CHC22 clathrin coat 

at the ERGIC then facilitates sorting of GLUT4 to the intracellular region where 

GLUT4 storage vesicles (GSV) and insulin responsive GLUT4 vesicles (IRV) are 

formed. After insulin-mediated GLUT4 translocation and GLUT4 re-uptake (by 

CHC17 clathrin), a complex forms (box B) between endosomal GLUT4, sortilin and 

the clathrin adaptor GGA2, which promotes CHC22 recruitment. Endosomal GLUT4 

sorting also involves clathrin adaptor AP1 (Blot and McGraw, 2008; Gillingham et al., 

1999), further participating in CHC22 recruitment to endosomes. Formation of the 

CHC22 coat on sorting endosomes facilitates GLUT4 traffic to the TGN via the 

retrograde pathway, enabling replenishment of the intracellular GSV/IRV pool. 

 

SUPPLEMENTARY INFORMATION 

 

Figure S1: Immunofluorescence localization of CHC22 at the ER-to-Golgi 

Intermediate Compartment in HeLa-GLUT4 cells and in human skeletal muscle 

cells. 

(A) CHC17 (X22 antibody) or CHC22 (CLTCL1 antibody from Proteintech) 

immunoblots (IB) of clathrin coated vesicles (CCV) purified from pig brain containing 

only CHC17 or of cell lysate from bacteria expressing low levels of the hub fragment 

(residues 1074-1640) of CHC22 (hub 22). The migration of molecular weight (MW) 

markers is indicated in kilodaltons (kDa). Ponceau staining for proteins is shown on 

the right (Pro). (B) Representative confocal microscopy immunofluorescence (IF) 

imaging of CHC22 (red or blue), p115 (red or blue) and GLUT4 (green) in HeLa-

GLUT4 cells (top panel) or LHCNM2 myotubes (bottom panel). (C) Representative IF 

staining for CHC22 (blue), ERGIC-53 (red) and GLUT4 (green) in HeLa-GLUT4 cells 

(top panel) or LHCNM2 myotubes (bottom panel). Scale bars: 5 μm for HeLa-GLUT4 

cells and 7.5 μm for LHCNM2 myotubes in (B) and (C). (D) Representative IF 

staining for CHC22 (blue), GM130 or TGN46 (red) and GLUT4 (GFP, green) in 
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HeLa-GLUT4 cells. Scale bars: 5 μm. (E) Representative IF staining for CHC22 

(blue), GM130 or TGN46 (green) and p115 (red) in LHCNM2 myotubes. Scale bars: 

7.5 μm. (F) Representative IF staining for CHC22 (blue), calreticulin (red) and 

GLUT4 (green) in HeLa-GLUT4 cells. Scale bars: 5 μm. (G) Representative IF 

staining for CHC22 (red), calnexin (CNX, blue) and GLUT4 (green) in hSkMC-

AB1190-GLUT4. Scale bars: 10 μm. (H) Representative Structured Illumination 

Microscopy (SIM) of a HeLa-GLUT4 (HeLa-G4) cell (top panel) and human skeletal 

muscle cell (hSkMC-AB1190-GLUT4, bottom panel) stained for CHC22 (red) and 

TGN46 (blue). GLUT4 (green) was detected by GFP tag in HeLa-GLUT4 and 

immunostained with an anti-GFP antibody in hSkMC-AB1190-GLUT4. Scale bar: 10 

μm. Merged images in (B-H) show red/green overlap in yellow, red/blue overlap in 

magenta, green/blue overlap in turquoise, and red/green/blue overlap in white. (I) 

Representative fluorescence intensity plots for GLUT4 (green), CHC22 (red) and 

p115, ERGIC-53, GM130 or TGN46 (blue) generated from SIM images of the 

perinuclear region of HeLa-GLUT4 cells. 

 

Figure S2: Surface GLUT4 is recycled to the GSC in proximity to the ERGIC. 

(A) Representative immunofluorescence (IF) staining for internalized surface-labeled 

GLUT4 (HA-tag, blue) and CHC22 (red) for HeLa-GLUT4 cells at 0, 10 or 30 minutes 

after insulin treatment. Total GLUT4 is detected by GFP tag (green). Scale bars: 5 

μm. (B) Pearson’s overlap for labeling of CHC22 and HA-tag (data expressed as 

mean ± SEM, N=3, 8-40 cells per experiment). One-way analysis of variance 

(ANOVA) followed by Bonferroni’s multiple comparison post-hoc test *p<0.05, 

****p<0.0001. (C) Representative immunofluorescence (IF) staining for internalized 

surface-labeled GLUT4 (HA-tag, blue) and ERGIC-53 (red) for HeLa-GLUT4 cells at 

0, 10 or 30 minutes after insulin treatment. Total GLUT4 is detected by GFP tag 

(green).  Scale bars: 10 μm. (D) Pearson’s overlap for labeling of ERGIC-53 and HA-

tag (data expressed as mean ± SEM, N=3, 14-22 cells per experiment). One-way 
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analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison post-hoc 

test ****p<0.0001. Merged images show red/green overlap in yellow, red/blue overlap 

in magenta, green/blue overlap in turquoise, and red/green/blue overlap in white. 

 

Figure S3: CHC22 re-distributes with p115 following Brefeldin A treatment. 

(A, B) Representative immunofluorescence (IF) staining for CHC22 (blue) and p115 

(red) in HeLa-GLUT4 cells (A) or LHCNM2 myotubes (B) treated or not with Brefeldin 

A (BFA). GLUT4 (green) was detected by GFP tag in HeLa-G4 cells and by IF of 

endogenous protein in LHCNM2 cells. Scale bars: 5 and 25 μm for (A) and (B), 

respectively. (C, D) Representative immunofluorescence (IF) staining of HeLa-

GLUT4 cells for CHC22 (blue) and ERGIC-53 (red) in (C) or Rab1 (red) in (D) treated 

or not with BFA and stimulated or not by insulin (Ins). GLUT4 (green) was detected 

by GFP. Scale bars: 10 μm. (E) Quantification of Pearson’s overlap values between 

CHC22, GLUT4, ERGIC-53 and Rab1 (data as in (C & D) expressed as mean ± 

SEM, N=3 to 4, 5 to 42 cells per experiment). One-way analysis of variance 

(ANOVA) followed by Tukey’s multiple comparison post-hoc test *p<0.05, 

***p<0.001. (F) Representative immunofluorescence staining for CHC22 (blue), 

ERGIC-53 (red) and GLUT4 (anti-GFP antibody, green) in hSkMC-AB1190-GLUT4 

treated or not with Brefeldin A (BFA) and stimulated or not by insulin (Ins). Scale bar: 

10 μm. Merged images show red/green overlap in yellow, red/blue overlap in 

magenta, green/blue overlap in turquoise, and red/green/blue overlap in white. 

 

Figure S4: GLUT4 is not recruited to Legionella pneumophila’s replicative 

vacuole.  

(A) Representative immunofluorescence images of single A549 cells from cultures 

treated with siRNA targeting CHC22 or with non-targeting control siRNA and labeled 

for Sec22b (red) and CHC22 (green), 1h post-infection with wild-type L.p. (MOI=50). 

Arrows point to L.p. detected with DAPI. Boxed inserts show L.p. region at 5X and 2X 
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magnification for siControl and siCHC22, respectively. Scale bar: 5 μm referring to 

main images. (B) Quantification of the proportion of L.p. vacuoles staining positive for 

Sec22b. Data expressed as mean ± SEM, N=4, 10 to 20 vacuoles counted per 

experiment as represented in (A). Two-tailed unpaired Student’s t-test with equal 

variances ***p<0.001. (C) Representative images of HeLa cells transiently 

expressing FcRII (needed for L.p. infection) (Arasaki and Roy, 2010), infected with 

wild type (WT) or mutant ΔdotA L.p. (MOI=50, red) and labeled 1 hour post-infection 

with antibodies against Rab1 (green). Hoechst stains the nuclei (blue). Arrows point 

to L.p., Scale bar: 10 μm. (D) Representative images of A549 cells transiently 

transfected with HA-GLUT4-GFP (green), infected with wild type L.p. expressing 

mono-DsRed protein (L.p.-DsRed, MOI=50, red) and labeled 1 hour post-infection 

with antibodies against endogenous CHC17 (upper panel) or CHC22 (lower panel) 

(blue). Scale bars: 5 μm. (E) Representative images of HeLa cells transiently 

expressing FcRII, infected with wild type (WT) or mutant ΔdotA L.p. (MOI=50, red) 

and labeled 1 hour post-infection with antibodies against Sec16a (E) (green). 

Hoechst stains the nuclei (blue). Arrows point to L.p., Scale bar: 10 μm. (F) 

Quantification of the proportion of vacuoles staining positive for Sec16a. Data 

expressed as mean ± SEM, N=3, 50 vacuoles counted per experiment as 

represented in (E). Merged images in (A and D) show red/green overlap in yellow, 

red/blue overlap in magenta, green/blue overlap in turquoise, and red/green/blue 

overlap in white. Merged images in (C and E) show red/green overlap in yellow. 

 

Figure S5: GM130 depletion affects the secretion of alkaline phosphatase in 

HeLa cells. 

Quantification of alkaline phosphatase secretion index for HeLa-GLUT4 cells treated 

with siRNA targeting CHC22, CHC17, p115 or GM130 or with non-targeting control 

siRNA. The alkaline phosphatase secretion index is the ratio of secreted enzyme 
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activity (culture medium) to total cellular activity (secreted plus cell lysate). Data 

expressed as mean ± SEM, N=13-19 independent samples across 2 independent 

assays. One-way analysis of variance (ANOVA) followed by Bonferroni’s multiple 

comparison post-hoc test **p<0.01 versus siControl. 

 
Videos 1 and 2: Concurrent live video microscopy of GLUT1 and GLUT4 in 

HeLa cells indicates distinct trafficking pathways. 

Each video shows a HeLa cell expressing the endoplasmic reticulum (ER) Ii-hook 

fused to streptavidin along with HA-GLUT1-SBP-mCherry (GLUT1, red) and HA-

GLUT4-SBP-GFP (GLUT4, green). The intracellular traffic of GLUT1-mCherry and 

GLUT4-GFP was simultaneously tracked for 1h after biotin addition released them 

from the ER. Upon ER exit, both GLUT1 and GLUT4 accumulated in the perinuclear 

region of the cell (yellow), then highly mobile GLUT1 vesicles become visible (red) 

while GLUT4 remained perinuclear. Timelapse videomicroscopy acquired on a 

spinning disk microscope at 8 frames per second. Video 1 stills are shown in Fig. 2A.  
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