136 research outputs found

    Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

    Get PDF
    The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body

    A Challenge for a Male Noctuid Moth? Discerning the Female Sex Pheromone against the Background of Plant Volatiles

    Get PDF
    Finding a partner is an essential task for members of all species. Like many insects, females of the noctuid moth Heliothis virescens release chemical cues consisting of a species-specific pheromone blend to attract conspecific males. While tracking these blends, male moths are also continuously confronted with a wide range of other odor molecules, many of which are plant volatiles. Therefore, we analyzed how background plant odors influence the degree of male moth attraction to pheromones. In order to mimic a natural situation, we tracked pheromone-guided behavior when males were presented with the headspaces of each of two host plants in addition to the female pheromone blend. Since volatile emissions are also dependent on the physiological state of the plant, we compared pheromone attraction in the background of both damaged and intact plants. Surprisingly, our results show that a natural odor bouquet does not influence flight behavior at all, although previous studies had shown a suppressive effect at the sensory level. We also chose different concentrations of single plant-emitted volatiles, which have previously been shown to be neurophysiologically relevant, and compared their influence on pheromone attraction. We observed that pheromone attraction in male moths was significantly impaired in a concentration-dependent manner when single plant volatiles were added. Finally, we quantified the amounts of volatile emission in our experiments using gas chromatography. Notably, when the natural emissions of host plants were compared with those of the tested single plant compounds, we found that host plants do not release volatiles at concentrations that impact pheromone-guided flight behavior of the moth. Hence, our results lead to the conclusion that pheromone-plant interactions in Heliothis virescens might be an effect of stimulation with supra-natural plant odor concentrations, whereas under more natural conditions the olfactory system of the male moth appears to be well adapted to follow the female pheromone plume without interference from plant-emitted odors

    Calcium imaging revealed no modulatory effect on odor-evoked responses of the Drosophila antennal lobe by two populations of inhibitory local interneurons

    Get PDF
    Strube-Bloss M, Grabe V, Hansson BS, Sachse S. Calcium imaging revealed no modulatory effect on odor-evoked responses of the Drosophila antennal lobe by two populations of inhibitory local interneurons. Scientific Reports. 2017;7(1): 7854

    Spatial Representation of Odorant Valence in an Insect Brain

    Get PDF
    SummaryBrains have to decide whether and how to respond to detected stimuli based on complex sensory input. The vinegar fly Drosophila melanogaster evaluates food sources based on olfactory cues. Here, we performed a behavioral screen using the vinegar fly and established the innate valence of 110 odorants. Our analysis of neuronal activation patterns evoked by attractive and aversive odorants suggests that even though the identity of odorants is coded by the set of activated receptors, the main representation of odorant valence is formed at the output level of the antennal lobe. The topographic clustering within the antennal lobe of valence-specific output neurons resembles a corresponding domain in the olfactory bulb of mice. The basal anatomical structure of the olfactory circuit between insects and vertebrates is known to be similar; our study suggests that the representation of odorant valence is as well

    Comparative dissection of the peripheral olfactory system of the Chagas disease vectors Rhodnius prolixus and Rhodnius brethesi

    Get PDF
    American trypanosomiasis, or Chagas disease, is transmitted by both domestic and sylvatic species of Triatominae which use sensory cues to locate their vertebrate hosts. Among them, odorants have been shown to play a key role. Previous work revealed morphological differences in the sensory apparatus of different species of Triatomines, but to date a comparative functional study of the olfactory system is lacking. After examining the antennal sensilla with scanning electronic microscopy (SEM), we compared olfactory responses of Rhodnius prolixus and the sylvatic Rhodnius brethesi using an electrophysiological approach. In electroantennogram (EAG) recordings, we first showed that the antenna of R. prolixus is highly responsive to carboxylic acids, compounds found in their habitat and the headspace of their vertebrate hosts. We then compared responses from olfactory sensory neurons (OSNs) housed in the grooved peg sensilla of both species, as these are tuned to these compounds using single-sensillum recordings (SSRs). In R. prolixus, the SSR responses revealed a narrower tuning breath than its sylvatic sibling, with the latter showing responses to a broader range of chemical classes. Additionally, we observed significant differences between these two species in their response to particular volatiles, such as amyl acetate and butyryl chloride. In summary, the closely related, but ecologically differentiated R. prolixus and R. brethesi display distinct differences in their olfactory functions. Considering the ongoing rapid destruction of the natural habitat of sylvatic species and the likely shift towards environments shaped by humans, we expect that our results will contribute to the design of efficient vector control strategies in the future.Author summaryAn estimated eight million people worldwide are infected with American trypanosomiasis, also known as Chagas disease, whose causative agent is the parasite Trypanosoma cruzi. Over a hundred species of insects belonging to the Tritatomine subfamily are vectors of the disease, as they spread T. cruzi through their feaces. Several studies have highlighted the importance of olfaction for host-seeking behavior in these insects, which enables them to locate their vertebrate hosts and to obtain their vital blood meal. Vector control strategies have been the most efficient policy to combat the spread of Chagas disease by triatomine insects. However, recent changes in the natural habitats of these insects challenge the efficacy of these strategies, as species so far thought to be exclusive to sylvatic environments are now frequently found in peridomestic areas. In this context, understanding how triatomines with different distributions detect odors to locate their hosts and choose their habitats is highly relevant. In this study, we compare the olfactory system of the widely distributed Rhodnius prolixus and a sylvatic sibling Rhodnius brethesi at a morphological and functional level. We reveal that detection of host and habitat volatiles share many similarities, but also exhibit pronounced differences between species

    Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe

    Get PDF
    BACKGROUND: Odors are represented by specific spatio-temporal activity patterns in the olfactory bulb of vertebrates and its insect analogue, the antennal lobe. In honeybees inhibitory circuits in the AL are involved in the processing of odors to shape afferent odor responses. GABA is known as an inhibitory transmitter in the antennal lobe, but not all interneurons are GABAergic. Therefore we sought to analyze the functional role of the inhibitory transmitter histamine for the processing of odors in the honeybee AL. RESULTS: We optically recorded the representation of odors before, during and after histamine application at the input level (estimated from a compound signal), and at the output level (by selectively measuring the projection neurons). For both, histamine led to a strong and reversible reduction of odor-evoked responses. CONCLUSION: We propose that histamine, in addition to GABA, acts as an inhibitory transmitter in the honeybee AL and is therefore likely to play a role in odor processing

    Odor-Induced Multi-Level Inhibitory Maps in Drosophila

    Get PDF
    Optical imaging of intracellular Ca2+ influx as a correlate of neuronal excitation represents a standard technique for visualizing spatiotemporal activity of neuronal networks. However, the information-processing properties of single neurons and neuronal circuits likewise involve inhibition of neuronal membrane potential. Here, we report spatially resolved optical imaging of odor-evoked inhibitory patterns in the olfactory circuitry of Drosophila using a genetically encoded fluorescent Cl- sensor. In combination with the excitatory component reflected by intracellular Ca2+ dynamics, we present a comprehensive functional map of both odor-evoked neuronal activation and inhibition at different levels of olfactory processing. We demonstrate that odor-evoked inhibition carried by Cl- influx is present both in sensory neurons and second-order projection neurons (PNs), and is characterized by stereotypic, odor-specific patterns. Cl--mediated inhibition features distinct dynamics in different neuronal populations. Our data support a dual role of inhibitory neurons in the olfactory system: global gain control across the neuronal circuitry and glomerulus-specific inhibition to enhance neuronal information processing

    Odor-Induced Multi-Level Inhibitory Maps in Drosophila

    Get PDF
    Grabe V, Schubert M, Strube-Bloss M, et al. Odor-Induced Multi-Level Inhibitory Maps in Drosophila. eNeuro. 2019;7(1): ENEURO.0213-19.2019

    Feeding regulates sex pheromone attraction and courtship in Drosophila females

    Get PDF
    In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females
    • …
    corecore