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SUMMARY

Brains have to decidewhether and how to respond to
detected stimuli based on complex sensory input.
The vinegar fly Drosophila melanogaster evaluates
food sources based on olfactory cues. Here, we per-
formed a behavioral screen using the vinegar fly and
established the innate valence of 110 odorants. Our
analysis of neuronal activation patterns evoked by
attractive and aversive odorants suggests that even
though the identity of odorants is coded by the set
of activated receptors, the main representation of
odorant valence is formed at the output level of the
antennal lobe. The topographic clustering within
the antennal lobe of valence-specific output neurons
resembles a corresponding domain in the olfactory
bulb of mice. The basal anatomical structure of the
olfactory circuit between insects and vertebrates is
known to be similar; our study suggests that the
representation of odorant valence is as well.
INTRODUCTION

Animals make decisions by integrating a plethora of sensory

inputs. In-depth analyses of the complete pathway from stimulus

to decision are extremely rare because so many channels carry

information to (or within) the brain. The well-characterized olfac-

tory system of the vinegar fly Drosophila melanogaster does,

however, offer unique possibilities for analyzing the decision-

making process. Using simple cues, i.e., attractive and aversive

monomolecular odorants, we aimed to characterize the pathway

from ligand-receptor interactions to the formation of the first

valence-specific brain activity patterns; these patterns should

provide the substrate for decision making in the olfactory

circuitry.

Drosophila melanogaster is today one of the three foremost

models in olfactory research, paralleled only by the mouse and

the nematode. Considerable insights into olfactory circuits

have been achieved by combining neurogenetic tools with

neurophysiology. One of the most important tasks for a fly is to

locate and evaluate a substrate for feeding and oviposition. To

perform this task, the fly depends on olfactory cues emitted by

suitable substrates such as decaying fruit or unsuitable, e.g.,

toxic, substrates. Although such sources usually emit complex

molecular blends, monomolecular odorants have also been
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described as attractive or aversive to flies (Dekker et al., 2006;

Stensmyr et al., 2003).

Flies sense odorants using approximately 1,200 olfactory

sensory neurons (OSNs) located in their antennae, and approxi-

mately 120 OSNs located in the maxillary palps (Shanbhag

et al., 1999), the second olfactory organ. The OSNs represent

the input to thefirstprocessingcenter, theantennal lobe (AL).Pro-

jecting onto spherical structures (so-called glomeruli), they target

second-order neurons, the projection neurons (PNs) (Hildebrand

andShepherd, 1997). The PNs represent the output of the AL and

convey olfactory information to higher brain centers such as the

mushroom bodies and the lateral horn. Within the AL, OSNs

as well as PNs are connected via local interneurons (LNs) that

modulate OSN and PN activity (Wilson, 2008). OSNs are equip-

ped with one out of 62 olfactory receptor types coded for in the

D. melanogaster genome. OSNs expressing the same receptor

gene(s) target the same glomerulus, and most PNs also send

dendrites into a single glomerulus (Couto et al., 2005; Fishilevich

and Vosshall, 2005; Vosshall et al., 2000). Each glomerulus can

thus be considered a functional unit. The activation of some

glomeruli are thought to be hard-wired to mediate behavioral

responses; for example, glomerulus DM5 may mediate aversive

behavior (Semmelhack and Wang, 2009). Since experiments to

test this hypothesis were performed with only two olfactory

stimuli, however, no general conclusions can be reached.

The most comprehensive study on receptor-ligand interac-

tions so far tested a set of 24 D. melanogaster receptors against

a total of 110 odorants (Hallem and Carlson, 2006). With this

analysis as starting point, we screened the same set of odorants

for their innate hedonic valence. Considering these values, we

investigated the representation of odorant valence in the

D. melanogaster brain. We correlated our behavioral data with

the published single-sensillum recording (SSR) data (Hallem

and Carlson, 2006), and performed functional imaging experi-

ments using the six most attractive and six most aversive odor-

ants at the level of input (OSNs) and output neurons (PNs) of the

AL. Although we found only weak valence-specific activity at the

OSN level, attractive and aversive odorants could be well

discriminated based on the observed activity patterns at the

level of PNs. We identified six glomeruli in which an output

response was evoked almost exclusively by aversive odorants

and three glomeruli in which an output response was triggered

mainly by attractive odorants. By characterizing the spatial

coding patterns that are elicited by a set of odorants with known

valence from the periphery to the brain, we were able to relate

the first level of hedonic valence representation to the output

level of the AL.
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Figure 1. Hedonic Valence of Odorants

(A) Trap assay. Fifty flies (black circles) were free to choose between two traps with one trap containing the odorant plus solvent and the other containing the

solvent only. The only access for the odorant molecules into the bioassay chamber was through the 2.5 mm pipette tip opening through which flies entered

the traps. Flies in both traps were counted after 24 hr. For details of analysis, see Experimental Procedures. For an analysis of the concentration changes within

the assay during 24 hr, see Figure S1.

(B) Attraction indices of 110 odorants. Odorants are sorted according to attractiveness. Turquoise, attractive odorants with attraction index (AI) being significantly

(p < 0.05, Wilcoxon rank sum test) larger than 0; gray, neutral odorants with AI not differing from 0; magenta, aversive odorants with AI significantly (p < 0.05)

smaller than 0. Box plots give themedian (black bold line), quartiles (box), 95%confidence intervals (whiskers), and outliers (gray circles) of the ten replicated trap-

assay tests with each odorant. Functional groups of the odorants are color-coded.
RESULTS

Hedonic Valence of Odorants
Using a trap assay modified from previously described assays

(Larsson et al., 2004; Park et al., 2002) (Figure 1A), we screened

110 odorants for their valence. For an analysis of the concentra-

tion changes within the assay during 24 hr, see Figure S1. We

classified 60 as attractive, 44 as neutral, and only 6 odorants

as aversive (Figure 1B). With a median attraction index (AI) of
0.72 (Figure 1B), g-butyrolactone was the most attractive

compound, whereas benzaldehyde was the most aversive one

(median AI: �0.53). We could not find any correlation between

classical chemical structure and odorant valence, since both

highly attractive and neutral compounds were found in each

chemical class (color-coded in Figure 1B). Moreover, the six

aversive odorants belonged to three different chemical classes

(alcohols, aromatics, and terpenes), which also included highly

attractive substances.
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Figure 2. Analysis of Physicochemical and Physio-

logical Properties of Attractive and Aversive Odor-

ants

(A and B) Principal component analyses (PCA) of attractive

(turquoise) and aversive (magenta) odorants based (A) on

their physicochemical properties (i.e., a set of 32 physi-

cochemical descriptors; Haddad et al., 2008) and (B) on

published single sensillum recordings (Hallem and Carl-

son, 2006).

(C) Correlation between first principal component (based

on single-sensillum recording data) and attraction indices

(AI) of the odorants.
Correlation of Hedonic Valence and Physicochemical
Properties
Haddad et al. (2008) suggested that the olfactory percept of

a substance relies not simply on its chemical class but on

numerous additional molecular descriptors. We asked if these

physicochemical properties account for the innate valence.

However, using a principal component analysis (PCA, Figure 2A),

we did not find any coherent clustering of attractive and aversive

odorants. Neither did we find any correlation between the

Euclidean distance of odorant pairs based on their physico-

chemical properties and the distance between the odorants’

hedonic valence (Figure S2A; Table S1).

Peripheral Representation of Valence
Hallem and Carlson (2006) provided information regarding which

out of 24 D. melanogaster OSNs investigated was activated by

the 110 odorants tested.Wewonderedwhether we could predict

the valence of these odorants on the basis of the activated

olfactory receptor repertoire (for a chart of all used SSR data

from Hallem and Carlson, 2006; see Table S1). Again, a PCA

(Figure 2B) and a calculation of the Euclidean distance between

odorants (Figure S2B) performed with the published raw data

(Hallem and Carlson, 2006) was inconclusive in predicting

the hedonic valence of the odorants. Neither attractive nor

aversive odorants clustered in the PCA (Figure 2B), and the first

principal component of the same data set did not correlate

with the odorant attraction indices (Figure 2C). A correlation

of the first principal component with odorant valence was

found in an earlier study by Haddad et al. (2010), analyzing

D. melanogaster neuronal responses and preferences for seven

odorants. Our results, however, obtained with 110 odorants,

showed no representation of odorant valence at the level of the

antenna.

Representation of Valence in the AL
We next identified the AL glomeruli that became activated by the

six most attractive and the six most aversive odorants. To inves-

tigate the input as well as the output of the AL, we used the stan-

dard GAL4-UAS system (Brand and Perrimon, 1993) to drive

expression of the genetically encoded calcium sensor G-CaMP

and thus labeled either OSNs or PNs (Figure 3).

All stimuli produced multiglomerular activation patterns in the

AL (for a topographic visualization of activity patterns, see Fig-

ure S3; for numerical information on glomerular activations,

see Table S2; for identification of activated glomeruli, see Stökl

et al., 2010; for a validation of glomerular identification by use
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of a two-photon imaging setup, see Supplemental Information).

At the OSN level, individual glomeruli were similarly activated

by attractive and aversive odorants; i.e., attractive and aversive

odorants were not separated in a PCA based on activation

patterns (Figure 4A) and the hedonic distances of odorant pairs

were not correlated with their Euclidean distances based on

OSN responses (Figure S2C). As expected, the activation of

OSNs at the glomerular level strongly correlated (Figures S2G

and S2H) with the corresponding published SSR data (Hallem

and Carlson, 2006), confirming a correct glomeruli identification.

At the PN level, however, the subsets of glomeruli activated by

attractive odorants differed significantly from those activated by

aversive odorants (Table S2). Euclidean distances based on

hedonic distances of odorant pairs significantly correlated with

Euclidean distances based on PN activation patterns (Mantel

test, p < 0.01; Figures S2D and S2F). The latter accounted for

5%–18% of the variability of the distances of hedonic valences,

i.e., significantly more than calculated for the impact of physico-

chemical properties (0.3%), single sensillum responses (0.4%),

and OSN responses in the AL (0.07%–0.2%) (Figures S2A–S2C

and S2E). PNs innervating glomeruli DL5, D, and DL1 were acti-

vated almost exclusively by aversive odorants, whereas DM4,

DM5, and DM2 became mainly activated by attractive odorants

(Figure 4B, right panel), resulting in a separation of attractive

and aversive odorants in an activation pattern-based PCA

(Figure 4B).

To investigate whether the observed result depends on the

concentration of the stimulus, we repeated the functional

imaging experiments with stimulus concentrations increased

by two orders of magnitude (10�2; Figure S3; Table S2). Again,

no clear valence-specific pattern at the OSN level could be

detected (Figure 4C). Only three glomeruli (DA4, DC2, and

DC3) responded significantly discriminatively to aversive and

attractive odorants resulting in a weak separation of attractive

and aversive odorants (Figure 4C). However, probably due to

the strong but nondiscriminative response of several other

glomeruli, this separation was along principal component 2

that contributed less to the variance than principal component

1. Therefore, the split of attractive and aversive odorants at the

level of OSNs was not significant (p = 0.77).

On the contrary, PN patterns were clearly valence dependent

(Figure 4D). At the higher stimulus concentration, no glomerulus

was exclusively activated by attractive odorants. However, six

glomeruli (D, DA4, DL1, DL4, DL5, and DC3, see Figure 4D)

responded strongly and mainly to aversive odorants, which

substantiates their function as ‘‘aversive-specific’’ glomeruli, at



Figure 3. Identification of Glomeruli Activated by Attractive and Aversive Odorants Using Functional Calcium Imaging

(A) Schematized atlas of the AL representing glomeruli that have been functionally characterized. Flies expressing the genetically encoded calcium reporter

G-CaMP allowed us to visualize odorant-evoked activities at the level of OSNs (top panels) and PNs (bottom panels) using the Orco-GAL4 and GH146-GAL4 line,

respectively. Both lines label an overlapping set of glomeruli with the exception of glomerulus VM5, which is not labeled by the GH146 driver line. Glomeruli that

were not significantly activated by any of the odorants are filled in dark gray. AN, antennal nerve; ACT, antennocerebral tract.

(B) Representative false color-coded images showing the AL after stimulation with mineral oil as a control or with aversive (magenta) and attractive (turquoise)

odorants. All images are individually scaled to the strongest activated glomeruli of the entire AL (data shown only for the left AL). Values below the DF/F threshold

of 10% are omitted to illustrate the specificity of the signals, as well as the glomerular arrangement as visualized by the intrinsic fluorescence. Images represent

DF/F [%] superimposed onto the raw fluorescence images according to the scale below. White asterisk marks the PN soma cluster.

For observed activation patterns see Figure S3 and Table S2.
least when they become activated in a combinatorial pattern.

Hence, the finding that there is already a representation of

odorant valence at the output of the AL holds true over a concen-

tration range of at least two orders of magnitude.

Interestingly, those PNs that were significantly more activated

by aversive odorants innervated glomeruli clustered topograph-

ically in the lateral part of the AL, whereas the attractant-specific

PNs innervated glomeruli located at the medial part (inset in right

panels of Figures 4B and 4D,median distance between glomeruli

activated by odorants of similar hedonic valence, 23 mm;median

distance between glomeruli activated by odorants of different

hedonic valence, 43 mm; Mantel test, p < 0.001).

DISCUSSION

Drosophila melanogaster responds behaviorally to numerous

odorants. So far, only one study has dissected the flies’

responses to a large set of odorants. This study, however,

focused on response latencies and olfactory sensitivities but

not on the hedonic valence of these odorants (Keller and Vos-

shall, 2007). Here, we present the most comprehensive screen

for odorant valence performed so far in D. melanogaster. Our

results allowed us to assign the first clear representation of

hedonic valence in the D. melanogaster olfactory circuitry to

the AL output level.

An odorant’s identity has been shown to be determined by

numerous physicochemical properties, which, in turn, are deci-

sive for the set of OSNs (and thereby receptors) activated by

this odorant (Haddad et al., 2008). Furthermore, in a meta-anal-
ysis of 12 data sets, including separate studies in seven species,

the results of seven odorants tested in D. melanogaster sug-

gested that the specific set of receptors activated by an odorant

accounts for its hedonic valence (Haddad et al., 2010). In

contrast, neither the physicochemical properties of the 110

odorants used here (out of which four were included in the study

with seven compounds) (Figure 2A), nor the activated receptor

repertoire (Figure 2B, in which we reanalyzed the SSR data

obtained with the same 110 odorants by Hallem and Carlson,

2006) predicted the valence of the tested odorants. However,

as our set of 110 odorants included only four of the seven odor-

ants analyzed by Haddad et al. (2010), it is difficult to draw any

conclusions regarding the background to the contradicting

results. In humans, Khan et al. (2007) found a strong correlation

between physicochemical properties and hedonic valence of

odorants. We can only speculate, that this difference between

flies and humans is caused by different coding strategies for

innate hedonic valence, as suggested by the findings of Keller

and Vosshall (2007), showing that olfactory similarity judgment

clearly differs between flies and humans. Functional imaging of

calcium activity in OSNs enabled us to analyze activity of 20

OSN types targeting the top layer of the glomeruli (i.e., 60% of

all OSNs labeled by Orco-GAL4), 8 of which were not included

in the SSR study (Hallem and Carlson, 2006). Processing of

olfactory information already starts at the level of OSNs via

presynaptic inhibition (Olsen and Wilson, 2008; Root et al.,

2008). Hence, the odorant-evoked glomerular responses moni-

tored by functional imaging of OSNs at the level of the AL do

not necessarily mirror the results gained at the level of the
Cell Reports 1, 392–399, April 19, 2012 ª2012 The Authors 395



Figure 4. Representation of Odorants within the Antennal Lobe

(A and B) OSNs (A) and PNs (B) at weak stimulus concentrations.

(C and D) OSNs (C) and PNs (D) at strong stimulus concentrations.

Left panels, principal component analyses based on the activation patterns elicited by the 12 odorants tested (see Table S2). Representation of attractive

odorants differed from aversive ones at the PN level (ANOSIM, Bray-Curtis, weak concentration, p < 0.005, strong concentration, p < 0.002) but not at the level of

OSNs (weak concentration, p = 0.79, strong concentration, p = 0.77). Centre panels, bar graphs depicting the weight by which the activation of each glomerulus

affects the first principal component. Right panels, activation of individual glomeruli by attractive (turquoise) and aversive (magenta) odorants; bar plots depict

average response and standard deviation of six stimulations with attractive and with aversive odorants. Solid bars depict glomeruli that differ significantly in their

response to attractive and aversive odorants (p < 0.05, Mann-Whitney test). Inset depicts the spatial distribution of glomeruli that discriminatively responded to

attractive or aversive odorants.
antennae entirely. Nevertheless, the glomerular activation

patterns we observed at the AL input level resembled those of

the corresponding receptors on the antennae (Figures S2G

and S2H). Only three glomeruli (DA4, DC2, and DC3, Figure 4C)

did respond significantly and discriminatively to attractive as well

as aversive odorants. Since several other glomeruli exhibited

stronger responses but did not respond discriminatively, attrac-

tive and aversive odorants were not significantly separated

based on the OSN activity pattern (Figures 4A and 4C).

The scenario changed when we analyzed activity patterns at

the next processing level, the PNs. Here, we identified a large

set of strongly activated glomeruli that responded discrimina-

tively to attractive and aversive odorants. Glomeruli DM4,

DM5, andDM2were significantly stronger activated by attractive

components, whereas D, DA4, DC3, DL1, DL4, and DL5

responded almost exclusively to aversive odorants (Figures 4B

and 4D, right panels). Therefore, based on the PN activity

patterns, attractive and aversive odorants could be clearly sepa-

rated (Figures 4B and 4D). Interestingly DA4 and DC3 were iden-

tified as ‘‘aversive specific’’ both at the input (Figure 4C) and

output levels (Figure 4D).
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In another study that combined functional imaging and behav-

ioral experiments, Semmelhack and Wang (2009) determined

the role of several glomeruli in mediating responses to different

concentrations of cider vinegar. The authors identified DM1

and VA2 as mediators of attraction to vinegar, whereas DM5

was assigned as responsible for aversive behavior at high stim-

ulus concentrations. In light of these results, the authors sug-

gested DM5 to be hard-wired for generating innate aversive

behavior. We instead observed the DM5 to be strongly activated

by various attractive odorants at least at the PN level (Figure 4B,

right panel). What could have caused these inconsistent

results? An interesting outcome of the vinegar study, which

used an olfactometer and tested for immediate responses within

50–250 s, was that the valence of a blend was highly affected by

its concentration. The valence of vinegar changed when the

concentration was increased by less than one order of magni-

tude. In the trap assay, in which flies were tested in still air for

24 hr, a blend has earlier been shown to be attractive over five

orders of magnitude (Stökl et al., 2010) (for the time course of

concentration changes within the trap assay, see Figure S1). It

could thus be speculated that the glomeruli identified by



Semmelhack and Wang as aversive specific (Semmelhack and

Wang, 2009) might generate a concentration-dependent imme-

diate response to odorants, whereas the valence-specific PN

patterns described by us are less concentration dependent

and seem to be valid for flies that can decide unhurriedly whether

or not to approach an odorant. Interestingly, Semmelhack and

Wang (2009) found the same glomerulus DM5 involved in medi-

ating aversion to both the vinegar bouquet as well as an indi-

vidual odorant (ethyl butyrate) that is not present in vinegar. As

flies usually perceive blends rather than individual odorants, it

is of interest whether the coding and rating of blends can be pre-

dicted by the coding and rating of the blends’ individual compo-

nents. Our screen of 110 odorants provides a vantage point for

such an investigation.

In D. melanogaster larvae, the valence of odorants could be

predicted based on the activation patterns of a set of specific

receptors (Kreher et al., 2008), i.e., at the periphery of the olfac-

tory circuitry. However, the larval olfactory system shows striking

differences to the adult system, as it is for example greatly

reduced in every way, and thus cannot be expected to perform

in a similar fashion as the adult one. The systems differ both

regarding the number ofOSNs and the kind of olfactory receptors

expressed in these. Larvae have 21 OSNs expressing 25 recep-

tors (Fishilevich et al., 2005), whereas adults have approximately

1,200 OSNs expressing 62 receptors with an overlap between

adults and larvae of only 11 receptors (Shanbhag et al., 1999). It

would have been interesting to analyze, whether OSNs that are

expressed both in larvae and adults respond differentially to the

same set of odors. However, of the 11 larval OSNs investigated

by Kreher et al. (2008) only two are expressed in adult flies and

were included in our study. Due to this small overlap, no conclu-

sions can be drawn regarding the odorant specificity of OSNs

that are expressed both in larvae and adult flies. The difference

at the peripheral olfactory sensory system very likely reflects

different demands on the olfactory performance of larvae and

of adults. Larvae hatch on food andusuallymigratewithin a range

of only a few centimeters, i.e., nutritional decisions are made by

the adult fly during oviposition. Before ovipositing, the adult fly

needs to detect and evaluate food sources at a distance and

often against an olfactory background. This behavior probably

requires increasing numbers of OSNs and receptors in adult flies.

This increased capacity might occur due to the observed drift of

the first representation of valence from the sensory periphery to

the brain, as the information processing within the AL can help

flies to predict the meaning of an odorant. Interestingly, both

larvae and adult flies were repelled by methylphenol and benzal-

dehyde. The former is a typical mammalian odorant that is

used by blood-feeding insects to locate hosts but seems to be

avoided by plant-feeding insects (Hill et al., 2010). The latter is

a by-product of the production of hydrocyanic acid in seeds,

and serves as a defense against herbivores (Peterson et al.,

1987). Hence, by avoiding benzaldehyde, flies and larvae may

keep a safe distance from poisonous seeds. It should be

mentioned thatbenzaldehydehasbeenshown tobeamultimodal

stimulus affecting nociceptive as well as olfactory pathways

(Keene et al., 2004). However, as it produces aversive-specific

responses at the PN level of the AL, the olfactory pathway is

involved in dictating the hedonic valence of this stimulus.
There is an ongoing debate about how much olfactory infor-

mation is processed within the AL. Some studies found identical

activity patterns in OSNs and corresponding PNs (Semmelhack

and Wang, 2009; Wang et al., 2003), while others (Bhandawat

et al., 2007; Root et al., 2008; Wilson et al., 2004) suggested

different odorant representations at the two levels. The existence

of a representation of hedonic valence at the PN level but not at

the level of OSNs supports the argument that a considerable

amount of information is being processed, most likely by the

complex network formed by local interneurons (Chou et al.,

2010; Seki et al., 2010).

Ants classify other ants as nestmates or nonnestmates by

comparing their cuticular hydrocarbon profile with a learned

template (Leonhardt et al., 2007). Agreement of profile and

template leads to acceptance, while disagreement leads to

aggression. Contrary to our findings in flies, no neuronal correlate

of this classification was found in the ants’ antennal lobe. Nest-

mate and nonnestmate odors elicited similar activity patterns in

calcium imaging experiments (Brandstaetter et al., 2011). How-

ever, while flies should have an innate idea whether an odor

means food or not, nestmate recognition in ants depends on an

ongoing learning process, i.e., the reformation of their internal

template (Leonhardt et al., 2007). Therefore, it is likely that nest-

mate classification rather takes place in higher brain centers

like the mushroom bodies that have been shown to be involved

in Hymenopteran olfactory learning (Hourcade et al., 2010).

Interestingly, glomeruli that we found to be activatedmainly by

aversive odorants formed a cluster at the lateral part of the AL

(Figures 4B and 4D), whereas those that became more activated

by attractive odorants clustered at the medial part (Figure 4B).

Accordingly, we propose that two functional areas, located at

the output level of the AL and composed of glomerular clusters,

embody the first representation of hedonic valence of an odorant.

This finding is in accordance with results frommice and humans,

where the dorsal domain of the olfactory bulb seems to be

responsible for innate responses to aversive odorants (Kobaya-

kawa et al., 2007; Rolls et al., 2003). Further studies should

examine how the representation of valence in flies is transferred

to higher brain centers and ask whether the representation is

affected by learning. The identification of a large set of innately

attractive and aversive odorants is also an excellent springboard

for further studies on odorant-guided behavior in flies.

Our study is based on the establishment of the hedonic

valence of 110 odorants, with known physicochemical proper-

ties (Haddad et al., 2008) and peripheral neurophysiological

impact (Hallem and Carlson, 2006). These values in combination

with the establishment of input and output activation patterns in

the AL made it possible to conduct the first in-depth analysis

of the pathway from ligand-receptor interactions to the formation

of the first valence-specific patterns; such a pathway constitutes

the basis for decision making in the insect brain.
EXPERIMENTAL PROCEDURES

Behavior

To screen the attractiveness of a total of 110 odorants, we modified a trap

assay that has been used to determine differences in odorant-guided behavior

between different genotypes or species of Drosophila (Dekker et al., 2006;
Cell Reports 1, 392–399, April 19, 2012 ª2012 The Authors 397



Larsson et al., 2004; Ruebenbauer et al., 2008). Test chambers (transparent

yoghurt cups (500 ml) with 50 ventilation holes in the lid) contained a treatment

and a control trap made from small transparent plastic vials (30 ml) with a cut

micropipette tip (tip diameter 2 mm) inserted into a hole of the vial. The treat-

ment trap contained 2 ml of the test odorant diluted in 200 ml of water (plus 0.2 ml

Triton X-100 [http://www.sigmaaldrich.com]) as detergent applied on a piece

of filter paper, while the control trap contained only 200 ml of water plus

0.2 ml Triton X-100. Fifty flies (males and females, ratio about 1:1, 4–5 days

old, starved for 24 hr before the experiment) were placed in each test box (Fig-

ure 1). Experiments were always started at the same time of day and carried

out in a climate chamber (25�C, 70% humidity, 12-hr-light:12-hr-dark cycle).

The number of flies in and outside the traps was counted after 24 hr. Valence

of the tested odorants was quantified with an AI, calculated as: AI = (O-C)/(50),

where O is the number of flies in the odorant trap, C the number of flies in

the control trap, and 50 the sum of all flies tested. The resulting index ranges

from �1 (complete avoidance) to 1 (complete attraction). A value of zero

characterizes a neutral or nondetected odorant. Deviation of the AI from

zero and differences of the AI between groups were tested with the Wilcoxon

rank sum test.

For an analysis of the concentration changes within the assay during 24 hr,

see Figure S1.

Functional Imaging

Fly Preparation

In vivo preparation of flies (5 to 8 days old animals) and functional imaging of

odor-evoked calcium responses in the ALwere essentially as described (Strutz

et al., 2012; Stökl et al., 2010). Briefly, flies were anesthetized on ice for 15min,

fixed with the neck onto a Plexiglas stage using a copper plate (Athene Grids,

http://www.tedpella.com). The head was glued on the stage with colophony

resin (Royal Oak Rosinio, http://www.bandbuddy.com) and the antennae

pulled forward with a fine metal wire (http://www.hpreid.com). Polyethylene

foil was attached on the head and sealed to the cuticle with two-component

silicone (http://www.wpiinc.com). A small window was cut through the foil

and cuticle. Immediately after opening the head capsule, the brain was bathed

with Ringer solution (130 mM NaCl, 5 mM KCl, 2 mM MgCl(x 6H2O), 2 mM

CaCl2(x 2H2O), 36 mM Saccharose, 5 mM HEPES, [pH 7.3]). Removal of

trachea and glands allowed optical access to the ALs.

Odorant Stimulation

Odorants were diluted (10�1 or 10�3) in mineral oil (http://www.sigmaaldrich.

com). 6 ml of the diluted odorants was pipetted onto a small piece of filter paper

(�1 cm2, http://www.whatman.com), placed inside a glass Pasteur pipette. For

odorant application, a stimulus controller (Stimulus Controller CS-55, http://

www.syntech.nl) was used, which produced a continuous airstream, whose

flow of 1 l min-1 was monitored by a flowmeter (http://www.coleparmer.com).

A glass tube guided the airflow to the fly’s antennae. Within the constant air

stream, the applied odorant stimuli were additionally diluted by 1:10.

Functional Imaging

Imaging experiments were performed using a TillPhotonics imaging setup

(TILL imago, http://www.till-photonics.com) equipped with a CCD-camera

(PCO imaging, http://www.pco.de) mounted on a fluorescence microscope

(BX51WI, http://www.olympus.com) with a 20x water immersion objective

(NA 0.95, XLUM Plan FI, http://www.olympus.com). A monochromator (Poly-

chrome V, TillPhotonics) produced a 475 nm excitation wavelength, which

passed a SP500 filter, a dichromatic mirror (DCLP490) and finally a LP515 filter

before reaching the animal. Binning on the CCD-camera chip produced a reso-

lution of 1.2 mm pixel�1. Each recording lasted 10 s with an acquisition rate of

4 Hz. Odorants were applied during frames 6–14 (i.e., after 1.5 s, lasting for 2 s).

Experiments with single flies lasted up to 1 hr, with intervals between stimuli of

about 1 min. The two GAL4 driver lines, Orco and GH146 label 33 and 31

glomeruli, respectively (unpublished data). Using functional imaging we were

able to characterize the response profile of glomeruli in the top layer of the

antennal lobe. This group comprises 20 glomeruli and covers about 60% of

all glomeruli labeled by theOrco-GAL4 aswell as theGH146-GAL4 driver lines.

All visible glomeruli during our imaging experiments were thus labeled by both

lines, with the exception of glomerulus VM5, which is labeled by Orco but not

by GH146. This glomerulus was therefore excluded from the analysis (see

Figure 3).
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Image Analysis

Data were analyzed with custom-written IDL software (ITT Visual Information

Solutions, http://www.ittvis.com) provided by Mathias Ditzen and Giovanni

Galizia, Germany. All recordings were manually corrected for movement. To

achieve a comparable standard for the calculation of the relative fluorescence

changes (DF/F), the fluorescence background was subtracted from the aver-

aged values of frames 0 to 6 in each measurement, so that basal fluorescence

was normalized to zero. The false color-coded fluorescence changes in the

raw-data images have been calculated by subtracting frame 7 from frame

12. To calculate the response of a specific glomerulus to each odorant, a coor-

dinate (10310 mm) was placed in the center of an identified glomerulus and the

fluorescent changes were plotted as a function of time. Subsequently, the

mean value of frames 10 to 17 (response maximum during odorant stimulation)

of a specific glomerulus and odorant was calculated and averaged over all

animals. Glomerular identification was performed as described in detail in

Stökl et al. (2010) (see also Supplemental Information). Neither of the used

fly strains (see below) allowed us to visualize the activity of glomeruli inner-

vated by ionotropic receptors (IRs), whichmay play an additional role in coding

odorant valence. However, our approach allowed us to selectively visualize the

odorant-evoked glomerular activity pattern of the input and output neurons of

20 glomeruli of the AL (Table S2). The activated glomeruli were identified using

the well-defined OSN glomerular connectivity map of the fly AL (Couto et al.,

2005; Fishilevich and Vosshall, 2005). Additionally, we screened a set of odor-

ants with defined activation patterns to facilitate glomerular identification (e.g.,

DM5, ethyl-3-hydroxybutyrate; DM2, ethyl hexanoate; DM6, pentylacetate).

Fly Strains

For the calcium imaging experiments, we used the standard GAL4-UAS

system (Brand and Perrimon, 1993) to genetically express the calcium-sensi-

tive protein G-CaMP 1.6 (Ohkura et al., 2005) in either the majority of OSNs or

PNs using the Orco-GAL4 or GH146-GAL4 driver line, respectively.
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