17 research outputs found

    Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae)

    Get PDF
    The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (Ci) acquisition strategies are very diverse among microalgae and Ci availability varies greatly within and among habitats, we hypothesized that Ci acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of Ci uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. PH-drift and Ci uptake kinetic experiments were used to characterize Ci acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2, whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2-acclimated cultures ranged between 0.6 and 1.4 µM CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH-drifts. Ci uptake kinetics at different pH values showed that the affinity for Ci was largely influenced by external pH, being highest under conditions where CO2 dominated the Ci pool. In conclusion, Ci acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between Ci acquisition and ecological distribution

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Species-specific influence of Pi-status on inorganic carbon acquisition in microalgae (Chlorophyceae)

    No full text
    Inorganic phosphorus (Pi) is often the primary limiting nutrient in freshwater ecosystems. Since Pi-limitation affects energy transduction, and inorganic carbon (Ci) acquisition can be energy demanding, Ci-acquisition strategies were compared in four species of green algae grown under Pi-replete and Pi-limited conditions predominantly at low and partly at high CO2. Although Pi-limitation was evident by the 10-fold higher cellular C:P ratio and enhanced phosphatase activity, it only decreased Ci-acquisition to a small extent. Nonetheless, the effects of Pi-limitation on both CO2 and HCO3- acquisition were demonstrated. Decreased CO2 acquisition under conditions of Pi limitation was mainly visible in the maximum uptake rate (Vmax) and, for the neutrophile Scenedesmus vacuolatus, in the affinity for CO2 acquisition. Discrimination against 13C was higher under Pi-limited, high CO2 conditions, compared with Pi-replete, high CO2 conditions, in Chlamydomonas acidophila and S. vacuolatus. In the pH-drift experiments, HCO3- acquisition was reduced in Pi-limited C. reinhardtii. In general, energy demanding bicarbonate uptake was indicated by the less strong discrimination against 13C under low CO2 conditions in the neutrophiles (HCO3- users), separating them from the acidophilic or acidotolerant species (CO2 users). The high variability of the influence of Pi supply among different green algal species is linked to their species-specific Ci-acquisition strategies

    Data from: Nitrate or ammonium: influences of nitrogen source on the physiology of a green alga

    No full text
    In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium (NH4+)-use, in contrast to nitrate (NO3-)-use, more energy remains for other metabolic processes, especially under CO2- and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on NH4+ or NO3- under covariation of CO2 and Pi-supply in order to determine limitations, in a full-factorial design. As expected, results revealed higher carbon fixation rates for NH4+-grown cells compared to growth with NO3- under low CO2 conditions. NO3--grown cells accumulated more of the nine analysed amino acids, especially under Pi-limited conditions, compared to cells provided with NH4+. This is probably due to a slower protein synthesis in cells provided with NO3-. In contrast to our expectations, compared to NH4+-grown cells NO3--grown cells had higher photosynthetic efficiency under Pi-limitation. In conclusion, growth on the Ni-source NH4+ did not result in a clearly enhanced Ci-assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source

    Processing emotional prosody in a foreign language: the case of German and Hebrew

    No full text
    This study investigated the universality of emotional prosody in perception of discrete emotions when semantics is not available. In two experiments the perception of emotional prosody in Hebrew and German by listeners who speak one of the languages but not the other was investigated. Having a parallel tool in both languages allowed to conduct controlled comparisons. In Experiment 1, 39 native German speakers with no knowledge of Hebrew and 80 native Israeli speakers rated Hebrew sentences spoken with four different emotional prosodies (anger, fear, happiness, sadness) or neutral. The Hebrew version of the Test for Rating of Emotions in Speech (T-RES) was used for this purpose. Ratings indicated participants’ agreement on how much the sentence conveyed each of four discrete emotions (anger, fear, happiness and sadness). In Experient 2, 30 native speakers of German, and 24 Israeli native speakers of Hebrew who had no knowledge of German rated sentences of the German version of the T-RES. Based only on the prosody, German-speaking participants were able to accurately identify the emotions in the Hebrew sentences and Hebrew-speaking participants were able to identify the emotions in the German sentences. In both experiments ratings between the groups were similar. These findings show that individuals are able to identify emotions in a foreign language even if they do not have access to semantics. This ability goes beyond identification of target emotion; similarities between languages exist even for “wrong” perception. This adds to accumulating evidence in the literature on the universality of emotional prosody

    Proposed Stages of Myocardial Phenotype Development in Fabry Disease

    No full text
    OBJECTIVES: The authors sought to explore the Fabry myocardium in relation to storage, age, sex, structure, function, electrocardiogram changes, blood biomarkers, and inflammation/fibrosis. BACKGROUND: Fabry disease (FD) is a rare, x-linked lysosomal storage disorder. Mortality is mainly cardiovascular with men exhibiting cardiac symptoms earlier than women. By cardiovascular magnetic resonance, native T1 is low in FD because of sphingolipid accumulation. METHODS: A prospective, observational study of 182 FD (167 adults, 15 children; mean age 42 ± 17 years, 37% male) who underwent cardiovascular magnetic resonance including native T1, late gadolinium enhancement (LGE), and extracellular volume fraction, 12-lead electrocardiogram, and blood biomarkers (troponin and N-terminal pro-brain natriuretic peptide). RESULTS: In children, T1 was never below the normal range, but was lower with age (9 ms/year, r = −0.78 children; r = −0.41 whole cohort; both p < 0.001). Over the whole cohort, the T1 reduction with age was greater and more marked in men (men: −1.9 ms/year, r = −0.51, p < 0.001; women: −1.4 ms/year, r = −0.47 women, p < 0.001). Left ventricular hypertrophy (LVH), LGE, and electrocardiogram abnormalities occur earlier in men. Once LVH occurs, T1 demonstrates major sex dimorphism: with increasing LVH in women, T1 and LVH become uncorrelated (r = −0.239, p = 0.196) but in men, the correlation reverses and T1 increases (toward normal) with LVH (r = 0.631, p < 0.001), a U-shaped relationship of T1 to indexed left ventricular mass in men. CONCLUSIONS: These data suggest that myocyte storage starts in childhood and accumulates faster in men before triggering 2 processes: a sex-independent scar/inflammation regional response (LGE) and, in men, apparent myocyte hypertrophy diluting the T1 lowering of sphingolipid

    Organizing for Commons-Enabling Decision-Making Under Conflicting Institutional Logics in Social Entrepreneurship

    No full text
    Abstract Social entrepreneurship develops innovative opportunities and solutions aimed to (re)generate the common good. This emerging organizational form poses unprecedented challenges to group decision and negotiation studies. This article lever- ages conceptual tools from the literature on the commons and institutional logics as it explores the organizational conditions of social entrepreneurship that trigger commons-enabling decision-making in its organizational field. Through an inductive analysis of a longitudinal case, this study proposes a model that highlights the critical role of the bridging organization that can be introduced by the social entrepreneur in a previously fragmented organizational field. This bridging organization is in the con- dition to develop an innovative co-creation logic that can serve as a common ground to enable collaboration between actors from diverse and even conflicting institutional logics. The proposed model suggests that a practice-driven path to the construction of such a common ground for decision-making is more effective than a disclosure-driven path, which is based on classical conflict analysis techniques. The ICT-enabled activ- ity system developed by the social entrepreneur injects transparency and traceability into a previously opaque field, thus creating the conditions for distributed, flexible, and complementary sense- and decision-making processes that develop and protect the commons
    corecore