152 research outputs found

    Probing the interaction between solid benzene and water using vacuum ultraviolet and infrared spectroscopy

    Get PDF
    We present results of a combined vacuum ultravioloet (VUV) and infrared (IR) photoabsorption study of amorphous benzene:water mixtures and layers to investigate the benzene-water interaction in the solid phase. UV spectra of 1:1, 1:10 and 1:100 benzene:water mixtures at 24 K reveal a concentration dependent shift in the energies of the 1B2u, 1B1u and 1E1u electronic states of benzene. All the electronic bands blueshift from pure amorphous benzene towards gas phase energies with increasing water concentration. IR results reveal a strong dOH-π benzene-water interaction via the dangling OH stretch of water with the delocalised π system of the benzene molecule. Although this interaction influences the electronic states of benzene with the benzenewater interaction causing a redshift in the electronic states from that of the free benzene molecule, the benzene-benzene interaction has a more significant effect on the electronic states of benzene. VUV spectra of benzene and water layers show evidence of non-wetting between benzene and water, characterised by Rayleigh scattering tails at wavelengths greater than 220 nm. Our results also show evidence of benzene-water interaction at the benzene-water interface affecting both the benzene and the water electronic states. Annealing the mixtures and layers of benzene and water show that benzene remains trapped within in/under water ice until water desorption near 160 K. These first systematic studies of binary amorphous mixtures in the VUV, supported with complementary IR studies, provide a deeper insight into the influence of intermolecular interactions on intramolecular electronic states with significant implications for our understanding of photochemical processes in more realistic astrochemical environments

    Empathische Reaktionen gegenüber einem Roboter

    Get PDF
    Es ist bereits bekannt, dass Menschen soziale Reaktionen auf Computer und artifizielle Wesen wie virtuelle Agenten zeigen. Auch für die Mensch-Roboter-Interaktion konnten erste Studien zeigen, dass Menschen Verhalten zeigen, das man lediglich in der Mensch-Mensch-Kommunikation erwarten würde. Ob auch empathische Reaktionen gegenüber Robotern gezeigt werden, wurde bislang nicht untersucht. In einem 2x2 laborexperimentellen Design betrachteten die Probanden (N=40) zwei Filme, in denen ein Spielzeugroboter in Dinosaurierform entweder gequält oder gestreichelt wird (Treatmentfaktor 1, within subjects). Der einen Hälfte der Probanden wurde der Roboter vorab vorgestellt und 10 Minuten zum Kennenlernen überlassen, während der anderen Hälfte der Probanden der Roboter vollkommen fremd war (Treatment Faktor 2, between subjects). Nach jedem Video wurde das emotionale Befinden mit Hilfe der PANAS erhoben und die Probanden füllten am Ende einen Fragebogen zur Bewertung des Roboters aus. Nach der Rezeption des Videos, in dem der Roboter gequält wird, fühlten die Probanden sich signifikant schlechter (F(1/39)=26,946; p=.000). Die Bedingungsvariation der vorherigen Interaktion zeigte jedoch keinen Einfluss auf das emotionale Befinden nach der Rezeption des Videos oder die empfundene Empathie. Somit konnte gezeigt werden, dass eine negative Behandlung eines Roboters das eigene Empfinden beeinflusst, dass eine kurzzeitige Interaktion mit dem Roboter das Mitleiden aber nicht verstärkt

    Der Aufbau sozialer Beziehungen mit einem Roboter. Eine Beobachtungsstudie im Feld

    Get PDF
    Roboter nehmen in letzter Zeit vermehrt Einzug in verschiedene Lebensbereiche. Es werden nicht nur Haushaltsroboter, die staubsaugen, oder Roboter, die vorrangig Entertainment-Zwecken dienen, angeboten, sondern in einigen Altenheimen werden Roboter bereits eingesetzt, um Senioren Gesellschaft zu leisten. Vor diesem Hintergrund untersucht die Studie als Teil des EU Forschungsprojektes SERA (Social Engagement with Robots and Agents), ob und inwiefern soziale Beziehungen zu Robotern aufgebaut werden. In einer Beobachtungsstudie und einem anschließenden qualitativen Interview wurden drei weibliche Teilnehmer (zwischen 50 und 65 Jahren) über eine Woche in der Interaktion mit einem Nabaztag beobachtet. Dieser Roboter in Hasenform wurde für die Studie so programmiert, dass er mit den Untersuchungsteilnehmerinnen Dialoge rund um das Thema Gesundheit und Fitness führen konnte. Der Roboter nutzte Sprachoutput, der Input von Seiten der Teilnehmerinnen wurde über Ja/Nein Knöpfe vorgenommen. Mit einer Webcam wurden 66 Interaktionen aufgezeichnet. Die kategorienbasierte Auswertung der Transkripte zeigte z.B., dass der Nabaztag häufig natürlich-sprachlich adressiert wurde und ihm beispielsweise alltägliches Verhalten erklärt wurde, obwohl die Probandinnen wussten, dass der Roboter sie nicht verstehen kann, da eine Interaktion nur über die Knöpfe möglich war. Die Ergebnisse zeigen, dass durchaus Beziehungen aufgebaut werden und lassen Schlüsse über die soziale Natur des Menschen zu

    METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks

    Get PDF
    BACKGROUND: One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses. RESULTS: The computer program METANNOGEN facilitates the reconstruction of metabolic networks. It uses the well-known database of biochemical reactions KEGG of biochemical reactions as primary information source from which biochemical reactions relevant to the considered network can be selected, edited and stored in a separate, user-defined database. Reactions not contained in KEGG can be entered manually into the system. To aid the decision whether or not a reaction selected from KEGG belongs to the considered network METANNOGEN contains information of SWISSPROT and ENSEMBL and provides Web links to a number of important information sources like METACYC, BRENDA, NIST, and REACTOME. If a reaction is reported to occur in more than one cellular compartment, a corresponding number of reactions is generated each referring to one specific compartment. Transport processes of metabolites are entered like chemical reactions where reactants and products have different compartment attributes. The list of compartmentalized biochemical reactions and membrane transport processes compiled by means of METANNOGEN can be exported as an SBML file for further computational analysis. METANNOGEN is highly customizable with respect to the content of the SBML output file, additional data-fields, the graphical input form, highlighting of project specific search terms and dynamically generated Web-links. CONCLUSION: METANNOGEN is a flexible tool to manage information for the design of metabolic networks. The program requires Java Runtime Environment 1.4 or higher and about 100 MB of free RAM and about 200 MB of free HD space. It does not require installation and can be directly Java-webstarted from

    An empirical investigation of Network-Oriented Behaviors in Business-to-Business Markets

    Get PDF
    This study is concerned with the extent to which network-oriented behaviors directly and/or indirectly affect firm performance. It argues that a firm's interaction behaviors in relation to an embedded network structure are key mechanisms that facilitate the development of important organizational capabilities in dealing with business partners. Such network-oriented behaviors, which are aimed at affecting the position of a company in the network, are consequently important drivers of firm performance, rather than the network structure alone. We develop a conceptual model that captures network-oriented behaviors as a driving force of firm performance in relation to three other key organizational behaviors, i.e., customer-oriented, competitor-oriented and relationship-oriented behaviors. We test the hypothesized model using a dataset of 354 responses collected via an on-line questionnaire from UK managers, whose organizations operate in business-to-business markets in either the manufacturing or services sectors. This study provides four key findings. First, a firm's networkoriented behaviors positively affect the development of customer-oriented and competitor-oriented behaviors. Secondly, they also foster relationship coordination with its important business partners within the network. Thirdly, the effective management of the firm's portfolio of relationships is found to mediate the positive impact of network-oriented behaviors on firm profitability. Lastly, closeness to end-users amplifies the positive effect of network-oriented behaviors on relationship portfolio effectiveness

    FASIMU: flexible software for flux-balance computation series in large metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit.</p> <p>Results</p> <p>We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at <url>http://www.bioinformatics.org/fasimu</url> including manual, tutorial, and plugins.</p> <p>Conclusions</p> <p>We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.</p

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Expression Analysis of the Ligands for the Natural Killer Cell Receptors NKp30 and NKp44

    Get PDF
    BACKGROUND: The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G(2)/M phase. CONCLUSION/SIGNIFICANCE: These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands

    Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions.</p> <p>Results</p> <p>To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of <it>Escherichia coli </it>(931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state.</p> <p>Conclusion</p> <p>Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered.</p
    corecore