497 research outputs found
Evolving Morphologies for Locomoting Micro-scale Robotic Agents
Designing locomotive mechanisms for micro-scale robotic systems could enable new approaches to tackling problems such as transporting cargos, or self-assembling into pre-programmed architectures. Morphological factors often play a crucial role in determining the behaviour of micro-systems, yet understanding how to design these aspects optimally is a challenge. This paper explores how the morphology of a multi-cellular micro-robotic agent can be optimised for reliable locomotion using artificial evolution in a stochastic environment. We begin by establishing the theoretical mechanisms that would allow for collective locomotion to emerge from contractile actuations in multiple connected cells. These principles are used to develop a Cellular Potts model, in order to explore the locomotive performance of morphologies in simulation. Evolved morphologies yield significantly better performance in terms of the reliability of the travel direction and the distance covered, compared to random morphologies. Finally, we demonstrate that patterns in evolved morphologies are robust to small imperfections and generalise well to larger morphologies
Complete genome sequence of Bacteroides helcogenes type strain (P 36-108).
Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of B. helcogenes P 36-108(T) is already the fifth completed and published type strain genome from the genus Bacteroides in the family Bacteroidaceae. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project
Evaluating a Novel Class of Biomaterials: Magnesium-Containing Layered Double Hydroxides
Metallic magnesium and compounds such as magnesium hydroxide Mg(OH)2 have been shown to have osteoconductive properties under experimental conditions and are gaining an increasing interest in the field of degradable biomaterials. The application of the compounds as implant coatings could support implant incorporation, resulting in an increased period of use of the implants. A variety of Mg-containing Layered Double Hydroxides (Mg-LDHs) has been synthesized and examined. These materials have been tested in various in vitro and in vivo studies; the latter took place in different sites like in the middle ear or in the condyle of New Zealand White Rabbits. In the latest study newly formed bone could be found around the Mg-Al-CO3-LDH pellets, making it a promising compound for bone-healing applications.DFG/SFB/59
Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe
A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution
- …
