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Evolving Morphologies for Locomoting Micro-scale Robotic Agents

Matthew Uppington1, Pierangelo Gobbo2, Sabine Hauert3, Helmut Hauser4

Abstract— Designing new locomotive mechanisms for micro-
scale robotic systems could enable new approaches to tackling
problems such as transporting cargos, or self-assembling in
to pre-programmed architectures. Morphological factors often
play a crucial role in determining the behaviour of micro-
systems, yet understanding how to design these aspects opti-
mally is a challenge. This paper explores how the morphology
of a multi-cellular micro-robotic agent can be optimised for
reliable locomotion using artificial evolution in a stochastic
simulator. Evolved morphologies are found to yield significantly
better performance in terms of the reliability of the travel
direction and the distance covered, compared to random
morphologies.

I. INTRODUCTION

Locomotion is a crucial ability for micro-scale systems,
particularly in applications that involve the transportation
of cargos, like medicines, and self-assembling in pre-
programmed architectures. Our ability to produce micro-
scale systems composed of multi-cellular units ([1], [2]) and
functionalise them ([3], [4]) have seen several advancements
in recent years. Other breakthroughs with developing and
understanding contractile protocells and light-based testing
environments bring the promise of light-controllable, mobile
micro-robots closer to reality ([5], [6]).

Yet, understanding how to design optimal morphologies
for micro-scale robots that produce behaviours such as loco-
motion is still an open question. Morphology in this context
refers to the specific form or structure of a robot or group of
robots ([7], [8]). Artificial evolution has been used to search
for optimal robot morphologies in many studies ([9], [10]).

Exploring the potential abilities of such systems in simu-
lation is a vital first step towards eventually deploying new
micro-robots in real-world applications. In this paper, we pro-
pose a system of micro-scale cellular units that can expand
and contract in response to a light-based stimulus, as shown
in Figure 1. This is inspired primarily by the works of Gobbo
et al. and Downs et al., where they present similar forms of
actuation with protocells and hydrogel structures respectively
([5], [4]). Using light as a control medium is advantageous
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Fig. 1. (a) Conceptual illustration of micro-scale, light-reactive, contractile
cellular units – different cells expand when exposed to specific wavelengths
of light. (b) By using artificial evolution in a stochastic simulator, we seek to
optimise the morphology of a connected group of cells to allow locomotion
in a reliable direction.

for independently and precisely targeting micro-scale agents
([11]). This can be achieved with technology such as the
Dynamic Optical Micro Environment (DOME, [6]), which
provides an affordable, open source platform for testing light
reactive agents with closed loop control of light patterns. As
a first step, we optimise the morphology of a collection of
contractile cells in simulation.

In the next section we summarise some previous works
related to how locomotion has been achieved with micro-
robots, how their morphologies can be optimised and the
available methods for simulating them.

II. RELATED WORK

A. Micro-robot Locomotion

Locomotion has been achieved in micro-robots through
a variety of different methods. Downs et al. presented a
multi-responsive hydrogel structure that exemplifies several
techniques being used together, including light, temperature
and magnetism ([4]). Miskin et al. demonstrated light-based
control with micro-swarming robots that locomote when top-
mounted photo-voltaic receptors are targeted with light lasers
([11]). Due to the high resolution that is achievable with laser
targeting, each individual micro-robot in the swarm can be
controlled independently. Lv et al. also use light to manip-
ulate individual micro-particles, or aggregate large groups
of micro-particles into a local area with Light Activated
Marangoni Tweezers (LAMT), though only in the presence
of a photosurfactant solution ([12]).



B. Optimisation of Morphologies

With an ever increasing arsenal of materials to function-
alise micro-scale systems, the task of optimising their design
for a particular function, such as locomotion, is challenging.
Even with just a small set of building blocks, the range
of possible combinations to construct morphologies makes
it difficult to search efficiently for optimal solutions. One
solution is artificial evolution, which is a machine learning
technique that has a long history of being applied to opti-
mising the design and behaviour of robots ([13]). Mautner
and Belew showed how robot morphology could be evolved
in parallel with a controller in simulation ([9]). Since then, a
similar concept of simultaneously evolving morphology and
controller has been applied to physical robots ([10]).

One challenge is being able to bridge the reality gap
between morphologies evolved in simulation and morpholo-
gies produced in the real world. In the microscopic domain,
Kriegman et al. presented a solution for a scalable process for
designing and producing mobile morphologies using artificial
evolution ([2]). Morphologies were optimised for locomotion
by measuring performance in terms of total displacement
achieved in simulation during a given time. Whilst this
does produce mobile micro-robots, called Xenobots, their
trajectories cannot be controlled by external factors (such
as light). Kriegman et al. also note the importance of testing
high performing (simulation) morphologies in the presence
of noise, in order to filter out which simulated morphologies
are likely to perform well in the real world ([2]).

C. Cellular Simulators

The choice of simulation environment has a significant
impact on how systems can be represented and, therefore,
how they can be optimised with artificial evolution. The BSim
simulator, described by Gorochowski et al., allows collective
behaviours of agent-based, micro-scale systems to be mod-
elled in complex environments, though it is specifically de-
signed to model bacterial cells ([14]). Kriegman et al. defined
morphologies for Xenobots in simulation using a voxel grid
([2]). Voxel grids allow virtual organisms to be constructed
out of 3-dimensional arrays of customisable, cubic building
blocks ([15]). While voxel grids are an intuitive and effective
strategy, other simulation environments are better tailored to
modelling micro-scale systems.

Cickovski et al. introduced CompuCell3D as a flexible
simulation environment for micro-scale, cellular systems
([16]). The underlying model is Cellular Potts; a powerful,
generalised framework for simulating micro-scale systems
using a pixel grid ([17]). Cellular Potts models are intrin-
sically stochastic meaning that the need to introduce noise,
as highlighted by Kriegman et al., is satisfied naturally. In
addition, CompuCell3D provides a powerful Python based
interface, with built-in optimisation tools to manage CPU us-
age and modular run-time functionalities. These are desirable
features for balancing computational speed versus complex-
ity when running demanding artificial evolution algorithms
and, therefore, was chosen as our simulation environment.

The next section describes how our protocell-like contractile
cells were simulated using CompuCell3D.

III. METHOD

A. Contractile Cell Model

We use CompuCell3D to define a Cellular Potts model
of a connected group of cells. In Cellular Potts models,
cells are represented by a region of pixels within a grid and
the simulation is progressed incrementally in Monte Carlo
Steps (MCS), which are stochastic; in each MCS, each pixel
in the grid attempts to copy their value to a nearby pixel
with some probability of success. The core principle behind
Cellular Potts models is that interactions between entities can
be defined in terms of energy equations that determine the
probability of successful pixel copies ([17]).

We assume that each cell is able to increase its radius up
to a user defined maximum when exposed to a stimulating
control signal. So, we introduce an energy equation to control
the length of a cell in its primary (longest) axis and secondary
(orthogonal to primary) axis. We take a hypothetical 10µm
wide protocell at room temperature as inspiration for the
width of a cell when unstimulated, as introduced by Gobbo
et al. ([5]). The stochasticity in Cellular Potts models will
mean that the exact shape of a given cell will change
slightly with each simulation step. To ensure a cell does not
deviate unrealistically from roughly uniform shapes (circular
in 2D), additional energy equations are included to govern
the perimeter and surface area of the cell as a function of its
radius. To ensure neighbouring cells remain connected, the
ideal distance between their centres of mass is defined as
the sum of their radii. Note that these connections, referred
to as focal point plasticity links, are loose, meaning that
cells can freely rotate about other cells, unless otherwise
constrained. In addition, to prevent cells from being absorbed
in to each other, energy equations are introduced to apply a
small repulsive force between pixels belonging to different
cells. The balance of these interactions allows cells to stay
physically connected at their surface, whilst each maintaining
integrity and roughly uniform shapes.

B. Evolutionary Setup

To explore a large space of possible morphologies, analyt-
ical methods quickly become infeasible. Artificial evolution
provides a solution, by starting with a batch of random
morphologies, called the initial population or first genera-
tion. These morphologies are compared and ranked using
a performance metric called a fitness score - a numerical
value indicating how well they locomote (see Equation 1).
A new generation can then be created by replacing poorly
performing morphologies with random combinations of the
better performing morphologies (crossover), sometimes with
random changes (mutations). The best morphologies from
one generation are often carried over to the next generation
unaltered. By iteratively repeating this process for subsequent
generations the average performance of morphologies can be
gradually increased over multiple generations.



Fig. 2. Graph showing asynchronous control signals with a period of
400 simulation steps (MCS). The early (yellow) and late (purple) signals
cause cells radii to oscillate between a normalised minimum value, and a
maximum value (≈ 1.26, inspired by protocell transition between contracted
and expanded states [5]). Passive cells (turquoise) are not stimulated.

Fig. 3. Diagram showing how a random morphology with a 5×5 Cartesian
grid structure can be represented as a genome of length G = 25. First,
each row of cells is listed in order, starting from the top, moving down
the grid (a). Each cell state in the ordered list is then represented with
an index (b): ‘E’ = early actuating cell (yellow), ‘L’ = late actuating cell
(purple), ‘P’ = passive cell (turquoise), and ‘N’ = no cell (white). Any
compatible morphology can be uniquely re-constructed from such a genome
by reversing the process outlined above.

To establish the search space of morphologies, we arrange
the initial positions of cells into a 5×5 Cartesian formation,
as shown in Figure 3. Each position can either be occupied
by one of four cell types that we define as follows: a passive
cell that always stays at its minimum radius and does not
change size; an early actuating cell that oscillates between
its minimum and maximum radius over time; a late actuating
cell that is functionally identical to an early actuating cell
except for a phase difference in the oscillations; and finally
a ‘no cell’ type that denotes an empty gap in the morphology.
Two distinct active cell types are defined in order to allow
cells to be actuated at different times. Figure 2 shows the
models used for each active cell type over the course of an
actuation cycle. Figure 3 illustrates how morphologies are
encoded by listing rows of cell states, represented by letters,
from top to bottom. This allows the morphologies in the
5×5 Cartesian format to be uniquely expressed as ‘genomes’

consisting of 25 characters (‘genes’).

C. Performance Metric

The goal of optimisation is to find the morphologies that
display the furthest and most reliable locomotion. The loco-
motive performance of a morphology can be quantified using
the displacement of the morphology’s centre of mass after a
given number of simulation steps. To drive locomotion, the
radii of each cell in a given morphology is varied according
to their type, as shown in Figure 2, over one actuation cycle,
which corresponds to 400 MCS. Given the stochastic nature
of Cellular Potts models, tracking the average performance
not just over multiple actuation cycles, but also over multiple
independent simulations provides a more valuable descrip-
tion of the morphology’s expected behaviour. So, running K
simulations of a given morphology over T actuation cycles
provides us with a set of independently sampled vectors,
v1, ...,vK . These vectors describe the displacement between
the morphology’s starting position and it’s final position at
the end of the simulation. To optimise only over the total
distance covered we could simply take the average magnitude
of these vectors, i.e., D = 1

K

∑K
j=1 |vj |. However here, in

order to also encourage morphologies to travel in a reliable
direction, we want to minimise the variation over the direc-
tion. To optimise over both of these criteria simultaneously
during artificial evolution, we define the following fitness
function,

F =
1

T

∣∣∣∣∣∣
K∑
j=1

vj

K

∣∣∣∣∣∣ . (1)

We divide by T to average over the number of actuation
cycles that morphologies are simulated for. By taking the
magnitude of the averaged vector, morphologies are pe-
nalised for travelling in random directions, but rewarded
for travelling further in similar directions in each run. Note
that this fitness function is bounded by the average distance
covered, F ≤ D

T , since
∣∣∣∑K

j=1 vj

∣∣∣ ≤
∑K

j=1 |vj |. This
maximum limit is approached as the standard deviation in

travel directions σ =
√

1
K

∑K
j=1

(
θj − θ̄

)2
approaches zero,

where θ̄ = 1
K

∑K
j=1 θj is the average of the recorded travel

directions, θj . With a fitness function and evolutionary setup
defined, we explore the results of artificial evolution trials in
the next section.

IV. RESULTS

To generate an initial population of morphologies for
the artificial evolution algorithm, 32 randomly generated
genomes were created. During evolution, each genome was
tested by simulating its morphology for T = 10 actuation
cycles. This was repeated K = 4 times, to generate a sample
of displacement vectors. When analysing the performance
of specific morphologies in more detail after evolution, we
simulate morphologies for T = 50 actuation cycles, over
K = 10 independent runs. When progressing from one
generation to the next, we selected the top 6 best performing



Fig. 4. Graph showing the range (vertical bars) and average of the top 20%
of recorded fitness values per generation for 3 artificial evolution trials. In
each generation, each genome is simulated for T = 10 actuation cycles,
over K = 4 independent runs. Fitness is calculated according to Equation 1.

genomes to be retained and the worst 13 genomes were over-
written with random sequences of cell states. The remaining
13 genomes were each replaced by randomly selecting a pair
of retained, high performing genomes (selected from the best
6) and creating a new genome in which each cell state is
copied from one of the two ‘parent’ genomes uniformly at
random.

It was found that 50 generations was sufficient to allow
fitness values to increase significantly and morphologies
to converge. The top 20% of recorded fitness values in a
sample of three typical runs of artificial evolution is shown in
Figure 4. The best performing genomes show rapid increase
in fitness values for early generations with a plateau being
reached by around 30 generations. At this point, evolved
morphologies seem to have achieved roughly a 3 to 4 fold
increase in fitness score, compared to the initial population
of random morphologies.

Figure 5 shows a sample of displacement vectors and
recorded trajectories for a minimal, baseline morphology
consisting of just two cells - one of each active type. Figures
6, 7 and 8 show examples of high performing evolved
morphologies from independent evolution trials. In general,
the trajectories of the evolved morphologies are able to
travel farther than the two-cell morphology. The average
distances covered by the evolved morphologies shown range
between 21.7µm−36.1µm, compared to the average distance
recorded for the two-cell morphology, 6.8µm. Moreover, the
measured standard deviation in travel direction is signifi-
cantly lower for the evolved morphologies, ranging between
24.2◦−30.1◦, than for the two-cell morphology, 79.0◦. This
demonstrates that the evolved morphologies are able to more
consistently travel in a predictable direction.

V. DISCUSSION

There are several observations that can be made about the
evolved morphologies shown that could potentially inspire
future designs for micro-scale robots. Firstly, the found mor-
phologies mainly consist of active cell types, with the passive

Fig. 5. Sampled displacement vectors of the centre of mass of a two-cell
morphology (see top left). Vectors are measured after T = 50 actuation
cycles, in K = 10 independent runs for each morphology. Some typical
trajectories of each morphology’s centre of mass are also shown (orange,
green and blue). The black scale bars show the diameter of one unstimulated
cell. D is the average distance covered, σ is the standard deviation in travel
direction.

Fig. 6. Sampled displacement vectors of the centre of mass of an evolved
morphology (see bottom right) from independent trial 1. Notation and
simulation parameters are as described in Figure 5.

Fig. 7. Sampled displacement vectors of the centre of mass of an
evolved morphology (see bottom left) from independent trial 2. Notation
and simulation parameters are as described in Figure 5.



Fig. 8. Sampled displacement vectors of the centre of mass of an evolved
morphology (see top left) from independent trial 3. Notation and simulation
parameters are as described in Figure 5.

and ‘no cell’ states being far less common. This suggests that
the purely structural contribution of passive or absent cells
to a morphology is generally outweighed by the increased
locomotive potential offered from active cell types, when it
comes to generating larger and more reliable displacements.
However, the existing passive or ‘no cell’ states could also be
interpreted as a sign of robustness to defects. For example, an
active cell that loses its sensitivity to light would effectively
become a passive cell, or a morphology that suffers physical
damage may lose some cells by becoming detached. Future
studies could look to investigate this further to examine the
robustness of morphologies to different modes of failure.

Secondly, we see that ‘late’ (purple) and ‘early’ (yellow)
active cell types seem to define front and back sections
of evolved morphologies, with respect to the direction of
motion. However, this does not seem to generalise well to
the two-cell morphology. This suggests that the interactions
of just two active cells are dominated instead by the inherent
noise in the stochastic simulator, unlike the larger evolved
morphologies. Continuations of this work could experiment
with different fitness scores that penalise greater numbers
of cells, or experiment with generalising to larger scale
morphologies in order to explore the relationship between
relative size and reliability in travel direction. Future research
could also investigate more general actuation schemes than
the discrete active types presented here.

Overall, we find that evolved morphologies were able
to travel significantly greater distances compared to both
random morphologies, and a simple two-cell case. If the
distance travelled is averaged over the number of constituent
cells in the morphologies, the two-cell morphology in fact
achieves the greatest average distance per cell, though at
the cost of having highly chaotic trajectories. On the other
hand, evolved morphologies display a much lower standard
deviation in their travel direction, making their motion much
more predictable. This suggests that there may be some
trade-off between locomotive efficiency (distance per cell)
and reliability in direction of travel. In applications where
cells, acting as or carrying a cargo, need to be delivered to
a precise area, reliable travel directions would be important;

whereas in applications such as area coverage, moving fewer
cells greater distances in random directions may suffice, or
even benefit.

VI. CONCLUSION
We have shown that artificial evolution can be used to

find morphologies that allow simulated groups of connected,
contractile cells to locomote consistently in the presence of
noise. The patterns shown in the evolved morphologies could
inspire future designs for mobile, mirco-scale robots consist-
ing of light-reactive, contractile units. The ability to illicit
controlled locomotion from optical illumination will open
up new possibilities for achieving swarm-like behaviours in
micro-scale systems.
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