11 research outputs found

    OH maser towards IRAS 06056+2131: polarization parameters and evolution status

    Get PDF
    We present high angular resolution observations of OH maser emission towards the high-mass star forming region IRAS 06056+2131. The observations were carried out using the UK radio interferometer array, Multi-Element Radio Linked Interferometer Network (MERLIN) in the OH main lines at 1665- and 1667-MHz, in addition to the OH satellite line at 1720-MHz. The results of this study revealed emission in the 1665 MHz line with an estimated total intensity of 4\sim 4 Jy. We did not detect any emission from the 1667-MHz and 1720-MHz lines. The full polarization mode of MERLIN enables us to investigate the magnetic field in the OH maser region. Our results show that IRAS 06056+2131 is a highly circularly polarized source. In this transition, a Zeeman pair is identified from which a magnetic strength of 1.5\sim -1.5 mG is inferred. The orientation of the linear polarization vectors suggests that the magnetic field lines at the location of the OH maser emission \textbf{might be} in agreement with the orientation of the outflow thought to be associated with this source. The star forming evolutionary status of the embedded proto-stellar object is discussed.Comment: 10 pages, 5 figure

    Development in Astronomy and Space Science in Africa

    Full text link
    The development of astronomy and space science in Africa has grown significantly over the past few years. These advancements make the United Nations Sustainable Development Goals more achievable, and open up the possibility of new beneficial collaborations.Comment: Paper published in Nature Astronomy. Figures 1 and 2 are included in the published version, that can be seen at https://rdcu.be/2oE

    Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images

    Get PDF
    Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique (BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U-Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique outperforms other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classification performance from plain CXR images is slightly better than the segmented lung CXR images; however, the reliability of network performance is significantly improved for the segmented lung images, which was observed using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray images.COVID19 Emergency Response Grant #QUERG-CENG-2020-1 from Qatar University, Doha, Qatar provided the support for the work and the claims made herein are solely the responsibility of the authors

    Applying Adomian Decomposition Method for solving the Covid-19 epidemic with Vaccine

    Get PDF
    Abstract— A pandemic Covid-19 is an epidemic that spreads over a big region, Crosse international borders, and often affects a lot of people. Only a few pandemics result in severe illness in a subset of people or in an entire community. The virus has mainly affects the elderly population. The virus, that causes Covid-19, has mainly been transmitted through droplet generate once an infected persons exhales, sneezes and coughs. These symptoms are too heavy; to hang in air, and quickly, fall on surface or floor. The COVID-19 pandemic model including the Vaccination Campaign is of natural phenomenon which can be represented as a system of differential equations for the first order; the mathematical models include a system of several second order nonlinear equations. We applied the Adomian decomposition methods to the mathematical models of Covid-19. The main advantage of this method is that it can be directly applied to all kinds of linear and nonlinear differential equations, homogeneous or nonhomogeneous, with constant or variable coefficients.  The derivatives of all compartments of the coronavirus model are continuous at t ≥ 0. The solutions of the model are non-negativity. It indicates that the, infection, will be gradually the epidemic and disappear will, stop.  If, R_0>1, the average of each affected individually. More than one person has infected, and the incidence of infection is in wrinkles. That means the epidemic, will not be end, while maintain the existence of the disease, the R_0=1 means that each infected patient results in an average infections.

    Development in astronomy and space science in Africa

    Get PDF
    The development of astronomy and space science in Africa has grown significantly over the past few years. These advancements make the United Nations Sustainable Development Goals more achievable, and open up the possibility of new beneficial collaborations. © 2018 The Publisher.This paper is dedicated to all of the people who somehow contributed to the development of A&SS in Africa. Without them all of this would not be possible. In addition, this paper was inspired by sessions SS23 and LS7 during the 2018 European Week of A&SS (EWASS). Both sessions were supported by the UK Science and Technology Facilities Council, UK Royal Astronomical Society, International Astronomical Union Office of Astronomy for Development, European Astronomical Society, International Science Programme, and Development in Africa with Radio Astronomy project

    Inclusive education and research through African Network of Women in Astronomy and STEM for GIRLS in Ethiopia initiatives

    Get PDF
    The African Network of Women in Astronomy and STEM for GIRLS in Ethiopia initiatives have been established with aim to strengthen the participation of girls and women in astronomy and science in Africa and Ethiopia. We will not be able to achieve the UN Sustainable Development Goals without full participation of women and girls in all aspects of our society and without giving in future the same opportunity to all children to access education independently on their socio-economical status. In this paper both initiatives are briefly introduced.Comment: Proceedings paper of the International Astronomical Union Symposium 367: Education and Heritage in the Era of Big Data in Astronom

    Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis

    No full text
    In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be used in various modes of operation. These are: direct imaging, spectroscopic, polarimetric imaging, and spectro-polarimetric. The KFISP is an all-refractive design to meet the polarimetric requirements and includes a focal reducer with a corrector section, collimator section, parallel beam section (containing various imaging components), and camera section. The corrector section gives an unvignetted Field-of-View of 8' x 8' and the collimator section has a focal length of 305 mm and matches the focal ratio of the input beam. The parallel beam section is 200 mm long and near the middle of it there is an image of the telescope pupil. The camera section includes 5 elements and has a focal length of 154.51 mm which gives an instrument effective final focal ratio of f/6.14 (acting as a telescope focal reducer of 1:2 ratio). The KFISP contains an internal calibration system which hosts the calibration light injection system, an integrating sphere equipped with the required calibration light sources. The opto-mechanical parts of KFISP contain a double-layered carbon fiber strut structure and comprises its subsystems of slit and guider assemblies, filter wheel drawer, grism wheel drawer, polarimetric components cubical box, and CCD camera which is integrated with camera optics. The CCD camera has 2048 x 2048 pixels with 13.5-micron square pixel size. The camera is cooled by liquid Nitrogen and is fixed to the KFISP through the integrated camera lens. The KFISP has been fully commissioned, mounted and is being tested in all modes of operation. In this paper we introduce the ambitious scientific goals, the optical setups of KFISP, its opto-mechanical implementation and the performance analysis of the instrument. In addition, we describe the camera system, its performance, and its software control. Finally, we present a sample of the first light observations obtained from the instrument

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
    corecore