9 research outputs found

    Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand

    Get PDF
    BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both

    Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand

    Get PDF
    Low-density asymptomatic infections of Plasmodium spp. are common in low endemicity areas worldwide, but outside Africa, their contribution to malaria transmission is poorly understood. Community-based studies with highly sensitive molecular diagnostics are needed to quantify the asymptomatic reservoir of Plasmodium falciparum and P. vivax infections in Thai communities.; A cross-sectional survey of 4309 participants was conducted in three endemic areas in Kanchanaburi and Ratchaburi provinces of Thailand in 2012. The presence of P. falciparum and P. vivax parasites was determined using 18S rRNA qPCR. Gametocytes were also detected by pfs25 / pvs25 qRT-PCRs.; A total of 133 individuals were found infected with P. vivax (3.09%), 37 with P. falciparum (0.86%), and 11 with mixed P. vivax/ P. falciparum (0.26%). The clear majority of both P. vivax (91.7%) and P. falciparum (89.8%) infections were not accompanied by any febrile symptoms. Infections with either species were most common in adolescent and adult males. Recent travel to Myanmar was highly associated with P. falciparum (OR = 9.0, P = 0.001) but not P. vivax infections (P = 0.13). A large number of P. vivax (71.5%) and P. falciparum (72.0%) infections were gametocyte positive by pvs25/pfs25 qRT-PCR. Detection of gametocyte-specific pvs25 and pfs25 transcripts was strongly dependent on parasite density. pvs25 transcript numbers, a measure of gametocyte density, were also highly correlated with parasite density (r 2 = 0.82, P < 0.001).; Asymptomatic infections with Plasmodium spp. were common in western Thai communities in 2012. The high prevalence of gametocytes indicates that these infections may contribute substantially to the maintenance of local malaria transmission

    Added-value of mosquito vector breeding sites from street view images in the risk mapping of dengue incidence in Thailand.

    No full text
    Dengue is an emerging vector-borne viral disease across the world. The primary dengue mosquito vectors breed in containers with sufficient water and nutrition. Outdoor containers can be detected from geotagged images using state-of-the-art deep learning methods. In this study, we utilize such container information from street view images in developing a risk mapping model and determine the added value of including container information in predicting dengue risk. We developed seasonal-spatial models in which the target variable dengue incidence was explained using weather and container variable predictors. Linear mixed models with fixed and random effects are employed in our models to account for different characteristics of containers and weather variables. Using data from three provinces of Thailand between 2015 and 2018, the models are developed at the sub-district level resolution to facilitate the development of effective targeted intervention strategies. The performance of the models is evaluated with two baseline models: a classic linear model and a linear mixed model without container information. The performance evaluated with the correlation coefficients, R-squared, and AIC shows the proposed model with the container information outperforms both baseline models in all three provinces. Through sensitivity analysis, we investigate the containers that have a high impact on dengue risk. Our findings indicate that outdoor containers identified from street view images can be a useful data source in building effective dengue risk models and that the resulting models have potential in helping to target container elimination interventions

    Effects of COVID-19 government travel restrictions on mobility in a rural border area of Northern Thailand: A mobile phone tracking study.

    No full text
    BackgroundThailand is among the top five countries with effective COVID-19 transmission control. This study examines how news of presence of COVID-19 in Thailand, as well as varying levels of government restriction on movement, affected human mobility in a rural Thai population along the border with Myanmar.MethodsThis study makes use of mobility data collected using a smartphone app. Between November 2019 and June 2020, four major events concerning information dissemination or government intervention give rise to five time intervals of analysis. Radius of gyration is used to analyze movement in each interval, and movement during government-imposed curfew. Human mobility network visualization is used to identify changes in travel patterns between main geographic locations of activity. Cross-border mobility analysis highlights potential for intervillage and intercountry disease transmission.ResultsInter-village and cross-border movement was common in the pre-COVID-19 period. Radius of gyration and cross-border trips decreased following news of the first imported cases. During the government lockdown period, radius of gyration was reduced by more than 90% and cross-border movement was mostly limited to short-distance trips. Human mobility was nearly back to normal after relaxation of the lockdown.ConclusionsThis study provides insight into the impact of the government lockdown policy on an area with extremely low socio-economic status, poor healthcare resources, and highly active cross-border movement. The lockdown had a great impact on reducing individual mobility, including cross-border movement. The quick return to normal mobility after relaxation of the lockdown implies that close monitoring of disease should be continued to prevent a second wave

    Projecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models

    No full text
    Abstract Thailand has set a goal of eliminating malaria by 2024 in its national strategic plan. In this study, we used the Thailand malaria surveillance database to develop hierarchical spatiotemporal models to analyze retrospective patterns and predict Plasmodium falciparum and Plasmodium vivax malaria incidences at the provincial level. We first describe the available data, explain the hierarchical spatiotemporal framework underlying the analysis, and then display the results of fitting various space–time formulations to the malaria data with the different model selection metrics. The Bayesian model selection process assessed the sensitivity of different specifications to obtain the optimal models. To assess whether malaria could be eliminated by 2024 per Thailand’s National Malaria Elimination Strategy, 2017–2026, we used the best-fitted model to project the estimated cases for 2022–2028. The study results based on the models revealed different predicted estimates between both species. The model for P. falciparum suggested that zero P. falciparum cases might be possible by 2024, in contrast to the model for P. vivax, wherein zero P. vivax cases might not be reached. Innovative approaches in the P. vivax-specific control and elimination plans must be implemented to reach zero P. vivax and consequently declare Thailand as a malaria-free country

    Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand

    No full text
    BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both

    Malaria Research for Tailored Control and Elimination Strategies in the Greater Mekong Subregion

    No full text
    The malaria landscape in the Greater Mekong Subregion has experienced drastic changes with the ramp-up of the control efforts, revealing formidable challenges that slowed down the progress toward malaria elimination. Problems such as border malaria and cross-border malaria introduction, multidrug resistance in Plasmodium falciparum, the persistence of Plasmodium vivax, the asymptomatic parasite reservoirs, and insecticide resistance in primary vectors require integrated strategies tailored for individual nations in the region. In recognition of these challenges and the need for research, the Southeast Asian International Center of Excellence for Malaria Research has established a network of researchers and stakeholders and conducted basic and translational research to identify existing and emerging problems and develop new countermeasures. The installation of a comprehensive disease and vector surveillance system at sentinel sites in border areas with the implementation of passive/active case detection and cross-sectional surveys allowed timely detection and management of malaria cases, provided updated knowledge for effective vector control measures, and facilitated the efficacy studies of antimalarials. Incorporating sensitive molecular diagnosis to expose the significance of asymptomatic parasite reservoirs for sustaining transmission helped establish the necessary evidence to guide targeted control to eliminate residual transmission. In addition, this program has developed point-of-care diagnostics to monitor the quality of artemisinin combination therapies, delivering the needed information to the drug regulatory authorities to take measures against falsified and substandard antimalarials. To accelerate malaria elimination, this program has actively engaged with stakeholders of all levels, fostered vertical and horizontal collaborations, and enabled the effective dissemination of research findings

    Additional file 1: Table S1. of Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand

    No full text
    Performance of qPCR and qRT-PCR. The threshold cycles (CT) are shown for detection of plasmid standards at different copy numbers per reaction. The means and the standard errors of the mean (SEM) are shown for CT values used to determine the amplification efficiency (E) and r 2, with values in parenthesis excluded. Neg indicates no amplification. The limit of detection (red) is defined as the lowest copy number with > 50% success rate. (DOCX 24 kb
    corecore