246 research outputs found

    Temporal Trends of Dissolved Trace Metals in Jamaica Bay, NY: Importance of Wastewater Input and Submarine Groundwater Discharge in an Urban Estuary

    Get PDF
    Jamaica Bay, NY, is a highly urbanized estuary within the boroughs of New York City conspicuously lacking published information on dissolved trace metal concentrations. The current study examines the distribution and cycling of trace metals in that embayment with data gathered during cruises in November 2004, April 2005, and June 2006. Most of the metal distributions (Fe, Zn, Co, Ag, Cu, Pb, Ni) in the water column are explained by the input of substantial volumes of treated wastewater effluent. However, several lines of evidence suggest that submarine groundwater discharge (SGD) is also an important source of dissolved Fe, Zn, Co, Ni, and isotopically distinct stable Pb ratios (206Pb, 207Pb, 208Pb) in the Bay. Conversely, the recirculated seawater component of SGD is an apparent sink for dissolved Mo. This study provides the first measurements of dissolved trace metals in the Jamaica Bay water column and subterranean estuary and provides evidence for trace metal input due to SGD

    Global variability of high-nutrient low-chlorophyll regions using neural networks and wavelet coherence analysis

    Get PDF
    We examine 20 years of monthly global ocean color data and modeling outputs of nutrients using self-organizing map (SOM) analysis to identify characteristic spatial and temporal patterns of high-nutrient low-chlorophyll (HNLC) regions and their association with different climate modes. The global nitrate-to-chlorophyll ratio threshold of NO3 : Chl &gt; 17 (mmol NO3 mg Chl−1) is estimated to be a good indicator of the distribution limit of this unproductive biome that, on average, covers 92 × 106 km2 (∼ 25 % of the ocean). The trends in satellite-derived surface chlorophyll (0.6 ± 0.4 % yr−1 to 2 ± 0.4 % yr−1) suggest that HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, but much of this variation, particularly in the Southern Ocean, is produced by a climate-driven transition in 2009–2010. Indeed, since 2010, the extent of the HNLC zones has decreased at the poles (up to 8 %) and slightly increased at the Equator (&lt; 0.5 %). Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals such as the El Niño–Southern Oscillation (ENSO) and Meridional Overturning Circulation (MOC) at both short (2–4 years) and long (decadal) timescales. These results suggest global coupling in the functioning of distant biogeochemical regions.</p

    The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects

    Get PDF
    B vitamins play essential roles in central metabolism. These organic water-soluble molecules act as, or as part of, coenzymes within the cell. Unlike land plants, many eukaryotic algae are auxotrophic for certain B vitamins. Recent progress in algal genetic resources and environmental chemistry have promoted a renewal of interest in the role of vitamins in governing phytoplankton dynamics, and illuminated amazing versatility in phytoplankton vitamin metabolism. Accumulating evidence demonstrates metabolic complexity in the production and bioavailability of different vitamin forms, coupled with specialized acquisition strategies to salvage and remodel vitamin precursors. Here, I describe recent advances and discuss how they redefine our view of the way in which vitamins are cycled in aquatic ecosystems and their importance in structuring phytoplankton communities

    Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean

    Get PDF
    Trace metals and B-vitamins play critical roles in regulating marine phytoplankton growth and composition. While some microorganisms are capable of producing certain B-vitamins, others cannot synthesize them and depend on an exogenous supply. Therefore, external factors influencing vitamin synthesis, such as micronutrient concentrations, alter the extent to which B-vitamins are available to auxotrophs in surface waters. We examined iron, B7 (biotin) and B12 (cobalamin) dynamics in diatoms through laboratory culture experiments and within natural diatom assemblages present along an iron gradient in the Northeast Pacific Ocean. In laboratory cultures of the diatom Pseudo-nitzschia granii, biotin synthase (BIOB) expression decreased 2-fold under iron limitation, suggesting iron status may affect B7 production in diatoms. Additionally in laboratory cultures of the diatom Grammonema cf. islandica, which contains a B12-independent methionine synthase (METE), a 15-fold increase in the expression of METE was observed when grown in the absence of B12 with no significant influence of iron status, suggesting METE expression can be driven by B12 status alone. Iron and B-vitamin amendment experiments with natural diatom assemblages in iron-limited waters of the Northeast Pacific Ocean provide evidence for vitamin-associated molecular responses that suggest elevated B7 biosynthesis and the emergence of B12 limitation following iron addition. Furthermore B-vitamin gene modules comprised of partial and/or complete B-vitamin biosynthetic pathways in diatoms increased in response to iron addition, including genes potentially involved in the processing of B12 intermediates. Our results indicate that vitamins may play an important role in regulating phytoplankton growth and composition in this region, particularly following natural iron addition events

    Nitrous oxide variability at sub-kilometre resolution in the Atlantic sector of the Southern Ocean

    Get PDF
    The Southern Ocean is an important region for global nitrous oxide (N2O) cycling. The contribution of different source and sink mechanisms is, however, not very well constrained due to a scarcity of seawater data from the area. Here we present high-resolution surface N2O measurements from the Atlantic sector of the Southern Ocean, taking advantage of a relatively new underway setup allowing for collection of data during transit across mesoscale features such as frontal systems and eddies. Covering a range of different environments and biogeochemical settings, N2O saturations and sea-to-air fluxes were highly variable: Saturations ranged from 96.5% at the sea ice edge in the Weddell Sea to 126.1% across the Polar Frontal Zone during transit to South Georgia. Negative sea-to-air fluxes (N2O uptake) of up to −1.3 µmol m−2 d−1 were observed in the Subantarctic Zone and highest positive fluxes (N2O emission) of 14.5 µmol m−2 d−1 in Stromness Bay, coastal South Georgia. Although N2O saturations were high in areas of high productivity, no correlation between saturations and chlorophyll a (as a proxy for productivity) was observed. Nevertheless, there is a clear effect of islands and shallow bathymetry on N2O production as inferred from supersaturations
    • …
    corecore