202 research outputs found

    Mutations of PIK3CA in gastric adenocarcinoma

    Get PDF
    BACKGROUND: Activation of the phosphatidylinositol 3-kinase (PI3K) through mutational inactivation of PTEN tumour suppressor gene is common in diverse cancer types, but rarely reported in gastric cancer. Recently, mutations in PIK3CA, which encodes the p110α catalytic subunit of PI3K, have been identified in various human cancers, including 3 of 12 gastric cancers. Eighty percent of these reported mutations clustered within 2 regions involving the helical and kinase domains. In vitro study on one of the "hot-spot" mutants has demonstrated it as an activating mutation. METHODS: Based on these data, we initiated PIK3CA mutation screening in 94 human gastric cancers by direct sequencing of the gene regions in which 80% of all the known PIK3CA mutations were found. We also examined PIK3CA expression level by extracting data from the previous large-scale gene expression profiling study. Using Significance Analysis of Microarrays (SAM), we further searched for genes that show correlating expression with PIK3CA. RESULTS: We have identified PIK3CA mutations in 4 cases (4.3%), all involving the previously reported hotspots. Among these 4 cases, 3 tumours demonstrated microsatellite instability and 2 tumours harboured concurrent KRAS mutation. Data extracted from microarray studies showed an increased expression of PIK3CA in gastric cancers when compared with the non-neoplastic gastric mucosae (p < 0.001). SAM further identified 2910 genes whose expression levels were positively associated with that of PIK3CA. CONCLUSION: Our data suggested that activation of the PI3K signalling pathway in gastric cancer may be achieved through up-regulation or mutation of PIK3CA, in which the latter may be a consequence of mismatch repair deficiency

    A Mild Form of SLC29A3 Disorder: A Frameshift Deletion Leads to the Paradoxical Translation of an Otherwise Noncoding mRNA Splice Variant

    Get PDF
    We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the ‘rescue’ role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A latent growth curve model to estimate electronic screen use patterns amongst adolescents aged 10 to 17 years

    Get PDF
    Background: High quality, longitudinal data describing young people's screen use across a number of distinct forms of screen activity is missing from the literature. This study tracked multiple screen use activities (passive screen use, gaming, social networking, web searching) amongst 10- to 17-year-old adolescents across 24 months. Methods: This study tracked the screen use of 1948 Australian students in Grade 5 (n = 636), Grade 7 (n = 672), and Grade 9 (n = 640) for 24 months. At approximately six-month intervals, students reported their total screen time as well as time spent on social networking, passive screen use, gaming, and web use. Patterns of screen use were determined using latent growth curve modelling. Results: In the Grades 7 and 9 cohorts, girls generally reported more screen use than boys (by approximately one hour a day), though all cohorts of boys reported more gaming. The different forms of screen use were remarkably stable, though specific cohorts showed change for certain forms of screen activity. Conclusion: These results highlight the diverse nature of adolescent screen use and emphasise the need to consider both grade and sex in future research and policy

    Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    Get PDF
    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate

    Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila

    Frequent reduced expression of alpha-1B-adrenergic receptor caused by aberrant promoter methylation in gastric cancers

    Get PDF
    Recent studies have suggested that epigenetic inactivation of tumour-related genes by promoter methylation participates in the development of gastric cancer. We newly identified the frequently aberrant promoter methylation of alpha-1B-adrenergic receptor (ADRA1B) in colorectal cancer by methylation-sensitive representational difference analysis (MS-RDA) and examined the methylation status of the ADRA1B promoter in 34 paired samples of colorectal cancer and surrounding epithelial tissue, and 34 paired samples of gastric cancer and surrounding epithelial tissue. In colorectal cancers, only four of 34 (11.8%) tumours showed ADRA1B promoter methylation. In contrast, ADRA1B promoter methylation was detected in 24 of 34 (70.6%) gastric cancers and in 14 of 34 (41.2%) surrounding epithelial tissues. The frequency of ADRA1B promoter methylation was higher in gastric epithelial tissues with intestinal metaplasia (41.6%) than in those without intestinal metaplasia (25.0%). Reverse transcription–PCR detected reduced ADRA1B expression in 12 of 18 (66.7%) gastric cancers, and its promoter methylation was detected in 11 of these 12 (91.7%) gastric cancers with reduced ADRA1B expression. Thus, ADRA1B promoter is frequently methylated in gastric cancer. Our results suggest that the ADRA1B gene is an important tumour-related gene frequently involved in the development and progression of gastric cancer

    Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach

    Get PDF
    Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence

    Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network

    Get PDF
    Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μm toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity (PI), the polarization fraction (PF), and the plane-of-The-sky B-field angle (χB_POS) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χBPOS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span 3 orders of magnitude in Stokes I and PI and 2 orders of magnitude in PF (from 0.2 to 20%). A large scatter in PI and PF is observed for a given value of I. Our analyses show a complex B-field structure when observed over the whole region ( 10 pc); however, at smaller scales (1 pc), χBPOS varies coherently along the crests of the filament network. The observed power spectrum of χBPOS can be well represented with a power law function with a slope of-1.33 ± 0.23, which is 20% shallower than that of I. We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χBPOS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density (NH2 â 1023 cm-2) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields
    corecore