2,448 research outputs found
A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex
Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.111310Ysciescopu
Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly
Regulation of Granulocyte and Macrophage Populations of Murine Bone Marrow Cells by G-CSF and CD137 Protein
BACKGROUND: Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors. CONCLUSIONS/SIGNIFICANCE: This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage
Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment
Understanding the co-occurrence of ecologically similar species remains a puzzling issue in community ecology. The species-rich mouse lemurs (Microcebus spec.) are distributed over nearly all remaining forest areas of Madagascar with a high variability in species distribution patterns. Locally, many congeneric species pairs seem to co-occur, but only little detailed information on spatial patterns is available. Here, we present the results of an intensive capture–mark–recapture study of sympatric Microcebus berthae and M. murinus populations that revealed small-scale mutual spatial exclusion. Nearest neighbour analysis indicated a spatial aggregation in Microcebus murinus but not in M. berthae. Although the diet of both species differed in proportions of food categories, they used the same food sources and had high feeding niche overlap. Also, forest structure related to the spatial distribution of main food sources did not explain spatial segregation because parts used by each species exclusively did not differ in density of trees, dead wood and lianas. We propose that life history trade-offs that result in species aggregation and a relative increase in the strength of intra-specific over inter-specific competition best explain the observed pattern of co-occurrence of ecologically similar congeneric Microcebus species
Controlling ferromagnetic easy axis in a layered MoS2 single crystal
We report the effective methods to induce weak ferromagnetism in pristine MoS2 persisting up to room temperature with the improved transport property, which would lead to new spintronics devices. The hydrogenation of MoS2 by heating at 300 degrees C for 1 h leads to the easy axis out of plane, while the irradiation of proton with a dose of 1 x 10(13) P/cm(2) leads to the easy axis in plane. The theoretical modeling supports such magnetic easy axes.open116160Nsciescopu
Species Difference of CD137 Ligand Signaling in Human and Murine Monocytes
BACKGROUND: Stimulation of CD137 ligand on human monocytes has been shown to induce DC differentiation, and these CD137L-DCs are more potent than classical DCs, in stimulating T cell responses in vitro. To allow an in vivo evaluation of the potency of CD137L-DCs in murine models we aimed at generating murine CD137L-DCs. METHODOLOGY/PRINCIPAL FINDINGS: When stimulated through CD137 ligand murine monocytes responded just as human monocytes with an increased adherence, morphological changes, proliferation and an increase in viable cell numbers. But CD137 ligand signaling did not induce expression of inflammatory cytokines and costimulatory molecules in murine monocytes and these cells had no T cell stimulatory activity. Murine monocytes did not differentiate to inflammatory DCs upon CD137 ligand signaling. Furthermore, while CD137 ligand signaling induces maturation of human immature classical DCs it failed to do so with murine immature classical DCs. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that both human and murine monocytes become activated by CD137 ligand signaling but only human and not murine monocytes differentiate to inflammatory DCs
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
- …