39 research outputs found

    Determination of the intramammary dose of benzylpenicillin required to maintain an adequate concentration in the milk to inhibit Gram-positive bacteria in the clinically normal udder for 24 hr

    Get PDF
    The aim of this study was to determine the intramammary dose of benzylpenicillin required to maintain a concentration in the milk above the MIC for the Gram-positive bacteria that cause mastitis. The product used in this study was a commercially available procaine benzylpenicillin in an oily suspension with micronized particles. Three dose levels were used: 200,000, 300,000, and 600,000IU. Concentrations of benzylpenicillin in cow milk and plasma were determined after a single intramammary dose was administered into one quarter of each of the five cows in each treatment group. Samples were analyzed using an HPLC-MS/MS method, which was validated during the study. Concentrations in the milk were well above the MIC for the target pathogens for all doses tested. There was a linear dose-dependent increase in the mean AUCs of benzylpenicillin concentrations in plasma and milk. At the first milking, 12hr after dosing, there was a significant difference between the mean milk benzylpenicillin concentrations in cows treated with a dose of 600,000IU, and those treated with 200,000 or 300,000IU. Although this study shows a linear relationship between the dose of procaine benzylpenicillin administered and the concentration in the milk in the healthy udder, it would be useful to conduct studies on cows with mastitis to define the optimum dose and duration of intramammary treatment with benzylpenicillin.Peer reviewe

    Infection prevention and control interventions in the first outbreak of methicillin-resistant Staphylococcus aureus infections in an equine hospital in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first outbreak of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infection in horses in Sweden occurred in 2008 at the University Animal Hospital and highlighted the need for improved infection prevention and control. The present study describes interventions and infection prevention control in an equine hospital setting July 2008 - April 2010.</p> <p>Method</p> <p>This descriptive study of interventions is based on examination of policy documents, medical records, notes from meetings and cost estimates. MRSA cases were identified through clinical sampling and telephone enquiries about horses post-surgery. Prospective sampling in the hospital environment with culture for MRSA and genotyping of isolates by <it>spa</it>-typing and pulsed-field gel electrophoresis (PFGE) were performed.</p> <p>Results</p> <p>Interventions focused on interruption of indirect contact spread of MRSA between horses via staff and equipment and included: Temporary suspension of elective surgery; and identification and isolation of MRSA-infected horses; collaboration was initiated between authorities in animal and human public health, human medicine infection control and the veterinary hospital; extensive cleaning and disinfection was performed; basic hygiene and cleaning policies, staff training, equipment modification and interior renovation were implemented over seven months.</p> <p>Ten (11%) of 92 surfaces sampled between July 2008 and April 2010 tested positive for MRSA <it>spa</it>-type 011, seven of which were from the first of nine sampling occasions. PFGE typing showed the isolates to be the outbreak strain (9 of 10) or a closely related strain. Two new cases of MRSA infection occurred 14 and 19 months later, but had no proven connections to the outbreak cases.</p> <p>Conclusions</p> <p>Collaboration between relevant authorities and the veterinary hospital and formation of an infection control committee with an executive working group were required to move the intervention process forward. Support from hospital management and the dedication of staff were essential for the development and implementation of new, improved routines. Demonstration of the outbreak strain in the environment was useful for interventions such as improvement of cleaning routines and interior design, and increased compliance with basic hygienic precautions. The interventions led to a reduction in MRSA-positive samples and the outbreak was considered curbed as no new cases occurred for over a year.</p

    Antimicrobial resistance monitoring and surveillance in the meat chain: A report from five countries in the European Union and European Economic Area

    Get PDF
    Background The emergence of antimicrobial resistance (AMR) in zoonotic foodborne pathogens (Salmonella, Campylobacter) and indicator microorganisms (E. coli, enterococci) is a major public health risk. Zoonotic bacteria, resistant to antimicrobials, are of special concern because they might compromise the effective treatment of infections in humans. Scope and approach In this review, the AMR monitoring and surveillance programmes in five selected countries within European Union (EU) and European Economic Area (EEA) are described. The sampling schemes, susceptibility testing for AMR identification, clinical breakpoints (clinical resistance) and epidemiological cut-off values (microbiological resistance) were considered to reflect on the most important variations between and within food-producing animal species, between countries, and to identify the most effective approach to tackle and manage the antimicrobial resistance in the food chain. Key findings and conclusions The science-based monitoring of AMR should encompass the whole food chain, supported with public health surveillance and should be conducted in accordance with ‘Zoonoses Directive’ (99/2003/EC). Such approach encompasses the integrated AMR monitoring in food animals, food and humans in the whole food (meat) chain continuum, e.g. pre-harvest (on-farm), harvest (in abattoir) and post-harvest (at retail). The information on AMR in critically important antimicrobials (CIA) for human medicine should be of particular importance

    Rapid detection of antibiotic resistance in positive blood cultures by MALDI-TOF MS and an automated and optimized MBT-ASTRA protocol for Escherichia coli and Klebsiella pneumoniae

    No full text
    Introduction: For fast and effective antibiotic therapy of serious infections like sepsis, it is crucial with rapid information about antibiotic susceptibility, especially in a time when the number of infections caused by multi resistant bacteria has escalated in the world.Methods: Here, we have used a semi-quantitative MALDI-TOF-MS based method for antibiotic resistance detection, MBT-ASTRA™, which is based on the comparison of growth rate of the bacteria cultivated with and without antibiotics. We demonstrate a new protocol where several parameters have been optimized and automated leading to reduced hands-on time and improved capacity to simultaneously analyse multiple clinical samples and antibiotics.Results: Ninety minutes of incubation at 37 °C with agitation was sufficient to differentiate the susceptible and resistant strains of E. coli and K. pneumoniae, for the antibiotics cefotaxime, meropenem and ciprofloxacin. In total, 841 positive blood culture analyses of 14 reference strains were performed. The overall sensitivity was 99%, specificity 99% and the accuracy 97%. The assay gave no errors for cefotaxime (n = 263) or meropenem (n = 289) for sensitive and resistant strains, whilst ciprofloxacin (n = 289) gave six (0.7%) major errors (false resistance) and four (0.5%) very major errors (false susceptibility). The intermediate strains showed a larger variety compared to the E-test MIC values.Conclusions: The hands-on time and the analysis time to detect antibiotic resistance of clinical blood samples can be substantially reduced and the sample capacity can be increased by using automation and this improved protocol
    corecore