2,825 research outputs found

    MHD models of Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical modeling of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.Comment: 18 pages, 5 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings

    Get PDF
    Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up

    BABIES WITH BRAIN DAMAGE WHO CAN NOT SWALLOW Surgical management

    Get PDF
    Background: Neonates with severe neurological impairment are often unable to swallow, necessitating gastrostomy for feeding. Because of the risk of developing severe reflux, this procedure is often associated with fundoplication. Objective: To assess the safety and efficacy of gastrostomy and Nissen fundoplication in 22 neonates with swallowing difficulties due to serious neurological impairment. Method: All children underwent an initial period of nasogastric feeding and after informed consent underwent gastrostomy and Nissen fundoplication. Results: There were no significant intraoperative complications. There were two cases of postoperative periostomy leakage. Of the 22 neonates 16 were alive four months after surgery. Six neonates died of complications due to underlying disease. Conclusion: We concluded that gastrostomy and Nissen fundoplication are safe procedures and help parents give a better care to these children.663B64164

    Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1–xInxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges

    Get PDF
    We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber

    Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Get PDF
    Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06. Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems

    Spinons and triplons in spatially anisotropic frustrated antiferromagnets

    Full text link
    The search for elementary excitations with fractional quantum numbers is a central challenge in modern condensed matter physics. We explore the possibility in a realistic model for several materials, the spin-1/2 spatially anisotropic frustrated Heisenberg antiferromagnet in two dimensions. By restricting the Hilbert space to that expressed by exact eigenstates of the Heisenberg chain, we derive an effective Schr\"odinger equation valid in the weak interchain-coupling regime. The dynamical spin correlations from this approach agree quantitatively with inelastic neutron measurements on the triangular antiferromagnet Cs_2CuCl_4. The spectral features in such antiferromagnets can be attributed to two types of excitations: descendents of one-dimensional spinons of individual chains, and coherently propagating "triplon" bound states of spinon pairs. We argue that triplons are generic features of spatially anisotropic frustrated antiferromagnets, and arise because the bound spinon pair lowers its kinetic energy by propagating between chains.Comment: 16 pages, 6 figure

    Ubiquitin-Specific Protease 25 Functions in Endoplasmic Reticulum-Associated Degradation

    Get PDF
    Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome

    Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank

    Get PDF
    Background The "healthy obese" hypothesis suggests the risks associated with excess adiposity are reduced in those with higher muscle quality (mass/strength). Alternative possibilities include loss of muscle quality as people become unwell (reverse causality) or unmeasured confounding. Methods and Results We conducted a cohort study using the UK Biobank (n=452 931). Baseline body mass index ( BMI) was used to quantify adiposity and handgrip strength ( HGS ) used for muscle quality. Outcomes were fatal and non-fatal cardiovascular disease, and mortality. As a secondary analysis we used waist-hip-ratio or fat mass percentage instead of BMI , and skeletal muscle mass index instead of HGS . In a subsample, we used gene scores for BMI , waist-hip-ratio and HGS in a Mendelian randomization ( MR ). BMI defined obesity was associated with an increased risk of all outcomes (hazard ratio [ HR ] range 1.10-1.82). Low HGS was associated with increased risks of cardiovascular and all-cause mortality ( HR range 1.39-1.72). HR s for the association between low HGS and cardiovascular disease events were smaller ( HR range 1.05-1.09). There was no suggestion of an interaction between HGS and BMI to support the healthy obese hypothesis. Results using other adiposity metrics were similar. There was no evidence of an association between skeletal muscle mass index and any outcome. Factorial Mendelian randomization confirmed no evidence for an interaction. Low genetically predicted HGS was associated with an increased risk of mortality ( HR range 1.08-1.19). Conclusions Our analyses do not support the healthy obese concept, with no evidence that the adverse effect of obesity on outcomes was reduced by improved muscle quality. Lower HGS was associated with increased risks of mortality in both observational and MR analyses, suggesting reverse causality may not be the sole explanation

    EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer

    Get PDF
    BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is frequently expressed in breast cancer, and its expression has been associated with poor prognosis. Breast cancer can be subdivided into intrinsic subtypes, differing in prognosis and response to therapy. METHODS: To investigate the association between EpCAM expression and prognosis in the intrinsic subtypes of breast cancer, we performed immunohistochemical studies on a tissue microarray encompassing a total of 1365 breast cancers with detailed clinicopathological annotation and outcomes data. RESULTS: We observed EpCAM expression in 660 out of 1365 (48%) cases. EpCAM expression varied significantly in the different intrinsic subtypes. In univariate analyses of all cases, EpCAM expression was associated with a significantly worse overall survival. In the intrinsic subtypes, EpCAM expression was associated with an unfavourable prognosis in the basal-like and luminal B HER2(+) subtypes but associated with a favourable prognosis in the HER2 subtype. Consistently, specific ablation of EpCAM resulted in increased cell viability in the breast cancer cell line SKBR3 (ER(−), PR(−), and HER2(+)) but decreased viability in the breast cancer cell line MDA-MB-231 (ER(−), PR(−), and HER2(−) ). CONCLUSION: The differential association of EpCAM expression with prognosis in intrinsic subtypes has important implications for the development of EpCAM-targeted therapies in breast cancer

    Structure and phase stability of nanocrystalline Ce1−xLnxO2−x/2−δ (Ln = Yb, Lu) in oxidizing and reducing atmosphere

    Get PDF
    The structure and phase evolution of nanocrystalline Ce1−xLnxO2−x/2−δ (Ln = Yb, Lu, x = 0 − 1) oxides upon heating in H2 was studied for the first time. Up to 950 °C the samples were single-phase, with structure changing smoothly with x from fluorite type (F) to bixbyite type (C). For the Lu-doped samples heated at 1100 °C in the air and H2, phase separation into coexisting F- and C-type structures was observed for ~0.40 < x < ~0.70 and ~0.25 < x < ~0.70, respectively. It was found also that addition of Lu3+ and Yb3+ strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C in both atmospheres. Valency of Ce and Yb in Ce0.1Lu0.9O1.55−δ and Ce0.95Yb0.05O1.975−δ samples heated at 1100 °C was studied by XANES and magnetic measurements. In the former Ce was dominated by Ce4+, with small contribution of Ce3+ after heating in H2. In the latter, Yb existed exclusively as 3+ in both O2 and H2
    corecore