59 research outputs found
Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6
Resonant magnetic excitations are widely recognized as hallmarks of
unconventional superconductivity in copper oxides, iron pnictides, and
heavy-fermion compounds. Numerous model calculations have related these modes
to the microscopic properties of the pair wave function, but the mechanisms
underlying their formation are still debated. Here we report the discovery of a
similar resonant mode in the non-superconducting, antiferromagnetically ordered
heavy-fermion metal CeB6. Unlike conventional magnons, the mode is
non-dispersive, and its intensity is sharply concentrated around a wave vector
separate from those characterizing the antiferromagnetic order. The magnetic
intensity distribution rather suggests that the mode is associated with a
coexisting order parameter of the unusual antiferro-quadrupolar phase of CeB6,
which has long remained "hidden" to the neutron-scattering probes. The mode
energy increases continuously below the onset temperature for
antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap
throughout the Brillouin zone. These attributes bear strong similarity to those
of the resonant modes observed in unconventional superconductors below their
critical temperatures. This unexpected commonality between the two disparate
ground states indicates the dominance of itinerant spin dynamics in the ordered
low-temperature phases of CeB6 and throws new light on the interplay between
antiferromagnetism, superconductivity, and "hidden" order parameters in
correlated-electron materials
Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+
The COMPASS experiment at the CERN SPS has studied the diffractive
dissociation of negative pions into the pi- pi- pi+ final state using a 190
GeV/c pion beam hitting a lead target. A partial wave analysis has been
performed on a sample of 420000 events taken at values of the squared
4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances
a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data
show a significant natural parity exchange production of a resonance with
spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The
resonant nature of this wave is evident from the mass-dependent phase
differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a
resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2
is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged;
version 3 updated authors, text shortened, data unchange
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …