187 research outputs found

    Observation of narrow states in nuclei beyond the proton drip line: 15F and 16Ne

    Get PDF
    Two high-lying states in 15F and 16Ne, unbound with respect to one-proton (1p) and two-proton (2p) emissions, have been observed in the fragmentation of 17Ne at intermediate energies. They undergo mainly sequential emissions of protons via intermediate states in 14O and 15F and have decay energies of 7.8(2) and 7.6(2) MeV, respectively. The widths of the newly observed states in 15F and 16Ne are much smaller than the Wigner limits for single-particle configurations, of 0.4(4) and 0.8(+8-4) MeV, respectively. In addition, narrow widths of 0.2(2) MeV are derived for two other high-lying states in 15F with Qp of 4.9 and 6.4 MeV, which match features of the recently predicted narrow odd-parity 15F states with two valence protons in the sd shell. All energies and widths have been obtained by analyzing angular correlations of the decay products, p-p-14O and p-p-13N, whose trajectories have been measured by a tracking technique with silicon microstrip detectors.EURONS EC-I3España FPA2006-13807-C02-0

    Proton-proton correlations observed in two-proton decay of 19Mg and 16Ne

    Get PDF
    Proton-proton correlations were observed for the two-proton decays of the ground states of 19Mg and 16Ne. The trajectories of the respective decay products, 17Ne+p+p and 14O+p+p, were measured by using a tracking technique with microstrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the sd shell.EURONS EC-I3MEC FPA2003-05958 FPA2006-13807-C02-0

    Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions

    Full text link
    The defining characteristics of fragment emission resulting from the non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are presented. Charge correlations and average relative velocities for mid-velocity fragment emission exhibit significant differences when compared to standard statistical decay. These differences associated with similar velocity dissipation are indicative of the influence of the entrance channel dynamics on the fragment production process

    Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data

    Full text link
    A phase transition signature associated with cumulants of the largest fragment size distribution has been identified in statistical multifragmentation models and examined in analysis of the ALADIN S254 data on fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of the transition point indicated by this signature are weakly dependent on the A/Z ratio of the fragmenting spectator source. In particular, chemical freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on Multifragmentation and Related Topics (IWM2009), Catania, Italy, November 2009

    Exome sequencing: the sweet spot before whole genomes

    Get PDF
    The development of massively parallel sequencing technologies, coupled with new massively parallel DNA enrichment technologies (genomic capture), has allowed the sequencing of targeted regions of the human genome in rapidly increasing numbers of samples. Genomic capture can target specific areas in the genome, including genes of interest and linkage regions, but this limits the study to what is already known. Exome capture allows an unbiased investigation of the complete protein-coding regions in the genome. Researchers can use exome capture to focus on a critical part of the human genome, allowing larger numbers of samples than are currently practical with whole-genome sequencing. In this review, we briefly describe some of the methodologies currently used for genomic and exome capture and highlight recent applications of this technology

    Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies

    Full text link
    Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperatureComment: 5 pages, 6 figure

    Coulomb fragmentation and Coulomb fission of relativistic heavy-ions and related nuclear structure aspects

    Get PDF
    The Coulomb excitation of 208Pb projectiles has been studied at an energy of 640 A MeV. Cross sections for the excitation of the two-phonon giant dipole resonance were measured for different targets, and show clear evidence for a two-step electromagnetic excitation mechanism. The experimental cross sections exceed those calculated in the harmonic oscillator approximation by a factor of 1.33 ± 0.16. The deduced 27-decay probability is consistent with the expectation in the harmonic limit. Finally, the excitation of the two-phonon giant dipole resonance in the deformed and fissile nucleus 238U is discussed

    Comprehensive assessment of sequence variation within the copy number variable defensin cluster on 8p23 by target enriched in-depth 454 sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In highly copy number variable (CNV) regions such as the human defensin gene locus, comprehensive assessment of sequence variations is challenging. PCR approaches are practically restricted to tiny fractions, and next-generation sequencing (NGS) approaches of whole individual genomes e.g. by the 1000 Genomes Project is confined by an affordable sequence depth. Combining target enrichment with NGS may represent a feasible approach.</p> <p>Results</p> <p>As a proof of principle, we enriched a ~850 kb section comprising the CNV defensin gene cluster DEFB, the invariable DEFA part and 11 control regions from two genomes by sequence capture and sequenced it by 454 technology. 6,651 differences to the human reference genome were found. Comparison to HapMap genotypes revealed sensitivities and specificities in the range of 94% to 99% for the identification of variations.</p> <p>Using error probabilities for rigorous filtering revealed 2,886 unique single nucleotide variations (SNVs) including 358 putative novel ones. DEFB CN determinations by haplotype ratios were in agreement with alternative methods.</p> <p>Conclusion</p> <p>Although currently labor extensive and having high costs, target enriched NGS provides a powerful tool for the comprehensive assessment of SNVs in highly polymorphic CNV regions of individual genomes. Furthermore, it reveals considerable amounts of putative novel variations and simultaneously allows CN estimation.</p

    Coulomb dissociation of 27 P: A reaction of astrophysical interest

    Get PDF
    The ground-state decay of 26Al(0+) (T 1/2=1.05 7 106) has a shorter life-time than the Universe. The presence of this element in the Galaxy was measured via g-ray spectroscopy, showing that the nucleosynthesis of this element is an ongoing process in stars. The proton-capture reaction 26Si(p,γ) 27P competes with the production of 26Al(0+) by β-decay. Coulomb dissociation of 27P has been suggested as an indirect method to measure radiative-proton capture when the direct reaction is not feasible. Such an experiment was performed at GSI with a secondary 27P beam produced by fragmenting a 36Ar primary beam at 500 A MeV. Two main observables are preliminarily presented in this work: the reaction cross section and the relative-energy spectrum of the outgoing fragments \ua9 Copyright owned by the author(s)

    Stereochemical Basis for Engineered Pyrrolysyl-tRNA Synthetase and the Efficient in Vivo Incorporation of Structurally Divergent Non-native Amino Acids

    Get PDF
    bS Supporting Information Incorporation of Uaas into proteins using a host’s endogenoustranslation machinery opens the door to addressing questions with chemical precision that is unattainable using naturally occurring amino acids. This expanded toolset allows one to pose and answer more in-depth molecular questions without the limitations imposed by the 20 natural amino acids used in traditional mutagenic analyses.1,2 Aminoacyl-tRNA synthetases (RSs) obtained by structure-based engineering and directed evolution efficiently recognize and activate Uaas through ATP-dependent adenylation and subsequently catalyze transfer to their cognate tRNA. To date, more than 70 Uaas are now amenable to translational insertion into proteins in bacteria, yeast, or mammalian cells using these artificially evolved tRNA/ RS pairs.3 By choosing particular matching sets of tRNA/RSs from diverse organisms, the pairs can function in vivo in a
    corecore