28,383 research outputs found
Magnetic properties of microtektites Semiannual status report, 1 Jan. - 31 Jun. 1969
Magnetic susceptibility, magnetization, and Curie constants for normal and bottle-green microtektites found in deep-sea sediment core
Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic earth entry
Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data which were curve fitted were calculated by using a technique which utilizes a one-strip integral method and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to 16 km.sec. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2, 4, and 6 were treated. Powerlaw formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent (or less). The curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry
Laser-velocimeter flow-field measurements of an advanced turboprop
Non-intrusive measurements of velocity about a spinner-propeller-nacelle configuration at a Mach number of 0.8 were performed. A laser velocimeter, specifically developed for these measurements in the NASA Lewis 8-foot by 6-foot Supersonic Wind Tunnel, was used to measure the flow-field of the advanced swept SR-3 turboprop. The laser velocimeter uses an argon ion laser and a 2-color optics system to allow simultaneous measurements of 2-components of velocity. The axisymmetric nature of the propeller-nacelle flow-field permits two separate 2 dimensonal measurements to be combined into 3 dimensional velocity data. Presented are data ahead of and behind the prop blades and also a limited set in between the blades. Aspects of the observed flow-field such as the tip vortex are discussed
The DMSP/MFR total ozone and radiance data base
This report describes the entries in sufficient detail so that the data base might be useful to others. The characteristics of the MFR sensor are briefly discussed and a complete index to the data base tapes is given
Systematic review of qualitative evaluations of reentry programs addressing problematic drug use and mental health disorders amongst people transitioning from prison to communities
© 2018, The Author(s). Background: The paper presents a systematic review and metasynthesis of findings from qualitative evaluations of community reentry programs. The programs sought to engage recently released adult prison inmates with either problematic drug use or a mental health disorder. Methods: Seven biomedical and social science databases, Cinahl, Pubmed, Scopus, Proquest, Medline, Sociological abstracts and Web of Science and publisher database Taylor and Francis were searched in 2016 resulting in 2373 potential papers. Abstract reviews left 140 papers of which 8 were included after detailed review. Major themes and subthemes were identified through grounded theory inductive analysis of results from the eight papers. Of the final eight papers the majority (6) were from the United States. In total, the papers covered 405 interviews and included 121 (30%) females and 284 (70%) males. Results: Findings suggest that the interpersonal skills of case workers; access to social support and housing; and continuity of case worker relationships throughout the pre-release and post-release period are key social and structural factors in program success. Conclusion: Evaluation of community reentry programs requires qualitative data to contextualize statistical findings and identify social and structural factors that impact on reducing incarceration and improving participant health. These aspects of program efficacy have implications for reentry program development and staff training and broader social and health policy and services
Giant viscosity enhancement in a spin-polarized Fermi liquid
The viscosity is measured for a Fermi liquid, a dilute He-He mixture,
under extremely high magnetic field/temperature conditions ( T, mK). The spin splitting energy is substantially greater than
the Fermi energy ; as a consequence the polarization tends to unity
and s-wave quasiparticle scattering is suppressed for . Using a
novel composite vibrating-wire viscometer an enhancement of the viscosity is
observed by a factor of more than 500 over its low-field value. Good agreement
is found between the measured viscosity and theoretical predictions based upon
a -matrix formalism.Comment: 4 pages, 4 figure
Wetting on a spherical wall: influence of liquid-gas interfacial properties
We study the equilibrium of a liquid film on an attractive spherical
substrate for an intermolecular interaction model exhibiting both fluid-fluid
and fluid-wall long-range forces. We first reexamine the wetting properties of
the model in the zero-curvature limit, i.e., for a planar wall, using an
effective interfacial Hamiltonian approach in the framework of the well known
sharp-kink approximation (SKA). We obtain very good agreement with a mean-field
density functional theory (DFT), fully justifying the use of SKA in this limit.
We then turn our attention to substrates of finite curvature and appropriately
modify the so-called soft-interface approximation (SIA) originally formulated
by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical
wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the
SKA functional form for the film growth. However, it turns out that the
agreement between SKA and our DFT is only qualitative. We then show that the
quantitative discrepancy between the two is due to the overestimation of the
liquid-gas surface tension within SKA. On the other hand, by relaxing the
assumption of a sharp interface, with, e.g., a simple smoothing of the density
profile there, markedly improves the predictive capability of the theory,
making it quantitative and showing that the liquid-gas surface tension plays a
crucial role when describing wetting on a curved substrate. In addition, we
show that in contrast to SKA, SIA predicts the expected mean-field critical
exponent of the liquid-gas surface tension
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
Behavioral Deficits and Axonal Injury Persistence after Rotational Head Injury Are Direction Dependent
Pigs continue to grow in importance as a tool in neuroscience. However, behavioral tests that have been validated in the rodent model do not translate well to pigs because of their very different responses to behavioral stimuli. We refined metrics for assessing porcine open field behavior to detect a wide spectrum of clinically relevant behaviors in the piglet post-traumatic brain injury (TBI). Female neonatal piglets underwent a rapid non-impact head rotation in the sagittal plane (n=8 evaluable) or were instrumented shams (n=7 evaluable). Open field testing was conducted 1 day prior to injury (day â1) in order to establish an individual baseline for analysis, and at days +1 and +4 after injury. Animals were then killed on day +6 after injury for neuropathological assessment of axonal injury. Injured piglets were less interested in interacting with environmental stimuli and had a lower activity level than did shams. These data were compared with previously published data for axial rotational injuries in neonatal piglets. Acute behavioral outcomes post-TBI showed a dependence on the rotational plane of the brain injury, with animals with sagittal injuries demonstrating a greater level of inactivity and less random usage of the open field space than those with axial injuries. The persistence of axonal injury is also dependent on the rotational plane, with sagittal rotations causing more prolonged injuries than axial rotations. These results are consistent with animal studies, finite element models, and studies of concussions in football, which have all demonstrated differences in injury severity depending upon the direction of head impact rotation
- âŠ