

CURVE FITS OF PREDICTED INVISCID
 STAGNATION-POINT RADIATIVE
 HEATING RATES, COOLING FACTORS, AND SHOCK STANDOFF DISTANCES FOR HYPERBOLIC EARTH ENTRY

by John T. Suttles, Edward M. Sullivan, and Stephen B. Margolis
Langley Research Center Hampton, Va. 23665

[^0]
CURVE FITS OF PREDICTED INVISCID STAGNATION-POINT RADIATIVE HEATING RATES, COOLING FACTORS, AND SHOCK STANDOFF DISTANCES FOR HYPERBOLIC EARTH ENTRY

By John T. Suttles, Edward M. Sullivan, and Stephen B. Margolis
Langley Research Center

SUMMARY

Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data which were curve fitted were calculated by using a technique which utilizes a one-strip integral method and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to $16 \mathrm{~km} / \mathrm{sec}$. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2,4 , and 6 were treated.

Power-law formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent (or less). The curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry.

INTRODUCTION

One of the problems encountered by hypervelocity heat-shield designers and trajectory analysts is that of calculating the radiative flux to an entry body. For economic reasons, it is desirable to conduct studies and preliminary design work by using simplified approaches and correlation equations such as those in reference 1. The radiative heatingrate correlation used in reference 1 was derived from early heating-rate predictions which were based on a transparent, constant property shock layer. More recent studies have shown the early work to be grossly in error for high-speed entry problems. The survey given in reference 2 shows that for high-speed entries a heating-rate analysis must include the combined effects of shock-layer radiative cooling (which results in
properties varying across the shock layer), nongray self-absorption, continuum radiation, and atomic line radiation to be valid.

Numerous analyses are now available (e.g., refs. 3 to 8) which include these important effects for inviscid, stagnation region flow. Several of these techniques (refs. 4 to 6) have used approximate absorption-coefficient models for the radiation calculations in the interest of making engineering simplifications to this complex problem. However, these approaches are not in a convenient form for designers and analysts who desire estimates of shock-layer radiative heat transfer without resorting to lengthy computer solutions. Based on the success of the graphical correlation in reference 9 , it is reasonable to expect that a simple analytic expression for radiative heating rates, such as that used in reference 1 , can be derived by curve fitting the results of detailed computer solutions. Therefore, such an effort was undertaken.

In addition to heating rates an effort was made to curve fit the cooling factor since it is believed that the results presented in this form will be of more lasting value than the heating-rate results. The cooling factor is simply the ratio of the heating rate for a nonadiabatic shock layer to the heating rate for an adiabatic shock layer with the heating rates based on the same radiation model, body size, and flight conditions. (It is well known that for hypervelocity flows nonadiabatic effects significantly reduce the radiative heating compared to the heating calculated by assuming adiabatic conditions.)

Olstad (refs. 4 and 9) has demonstrated that the cooling factor can be correlated as a function of the heating rate for an adiabatic shock layer normalized by the free-stream kinetic-energy flux $\left(\frac{1}{2} \rho_{\infty} V_{\infty} 3\right)$. The twofold usefulness of the cooling factor was also suggested by Olstad (ref. 9). First, the use of the cooling factor minimizes the effects of the radiation model used in the calculation; heating rates which have significantly different values as a consequence of the use of different radiation models show good agreement when compared on the cooling-factor basis. This rationale is used for the comparison of results in the present report. Second, because the cooling factor has this property of bringing radiative heating rates calculated with diverse radiation models to a common base, it can be used in conjunction with an adiabatic heating rate calculated with the best available radiation model to calculate the nonadiabatic heating rate. With this approach it is not necessary to use time-consuming coupled flow-field solutions to obtain radiative heating rates, nor is it necessary to recalculate the cooling factors as improvements are made in radiation models.

Since inviscid shock-standoff-distance values are obtained when heating rates and cooling factors are calculated, a curve fit for this quantity was derived also. The shock standoff distance is of interest to heat-shield designers, for example, in evaluating the effects of a probe extending from the body into the shock layer. Also, flow-field analysts
find that the shock standoff distance has numerous uses, two of which are for comparing various results and for initiating iterative solutions.

The present report presents the results of curve fitting information on calculated heating rate, cooling factor, and shock standoff distance with simple expressions involving free-stream conditions and vehicle geometry parameters. The calculations were made by using a radiatively coupled flow-field computer program (ref. 3) which includes a detailed nongray radiation model (refs. 10 and 11). The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to $16 \mathrm{~km} / \mathrm{sec}$. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2,4 , and 6 were treated. The simple form used for the curve fits is suitable for hand calculation with a slide rule or electronic desk calculator and can be readily included in a parametric analysis.

SYMBOLS

$\mathrm{a}_{\mathrm{ji}} \quad$ coefficient matrix of equation (5)
A_{i}
$B_{i} \quad$ constants used in cooling-factor curve fit (see eq. (7))
C_{i}
$D_{j} \quad$ constant vector of equation (5)
e base for natural logarithms ($e=2.71828$. . $)$

E total-error measure (see eq. (4))
$\mathrm{F}_{\mathrm{C}} \quad$ cooling factor, ratio of nonadiabatic-to-adiabatic heating rates
$\mathrm{G}_{\mathrm{j}} \quad$ constant vector of equation (8)
H_{j}
constant vector of equation (10)

X denotes any of quantities to be curve fitted

Subscripts:

C curve fit

D data
D data
r
index used for constants in curve-fit equations index used for equations resulting from minimization procedure constant in functional form assumed for curve-fit equations (case number)
total number of data points for a curve fit
radiative heating rate, $\mathrm{W} / \mathrm{cm}^{2}$ to major axis
body nose radius, cm
free-stream velocity, $\mathrm{km} / \mathrm{sec}$
stagnation-point shock standoff distance, cm
error of curve fit at the nth data point altitude), $\mathrm{g} / \mathrm{cm}^{3}$ axis ratio
shock standoff distance index used to identify individual data points which are to be curve fitted
axis ratio of elliptical bodies, free-stream velocity always oriented normal
free-stream density (obtained from 1962 standard atmosphere for a given

Superscripts:

$a, b, c \quad$ exponents in the functional form assumed for curve-fit equations

METHOD

The data to be curve fitted were obtained from solutions of the inviscid radiating flow field in the stagnation region of a blunt body (fig. 1), which is entering the Earth's atmosphere. These solutions were obtained by using the one-strip integral method of reference 3 which incorporates the nongray radiation model of reference 10 as a subroutine. The radiation model ("RATRAP") is described in further detail and compared with other models in reference 11. The computational method is for the inviscid flow of air in chemical and local thermodynamic equilibrium. The radiation calculations assume a plane slab shock-layer geometry and neglect absorption by the air upstream of the shock layer and byproducts of ablation at the body surface. Discussion of the importance of these effects can be found in reference 2.

The data on which the curve fits are based are given in table I. The free-stream conditions, velocity and density (density determined from 1962 standard atmosphere for a given altitude), were picked to cover the range of interest for high-speed entry cases where radiative heating will be important. Figure 2 illustrates the conditions chosen: a typical manned planetary-return lifting-entry trajectory (ref. 12), a range of highvelocity ballistic-entry trajectories (from an unpublished study), and a matrix of cases which span the trajectories. The body sizes were selected from results of an unpublished study and cover a range of interest from small unmanned probes of preliminary flighttest vehicles to large manned spacecraft. Thus, the curve fits should be of value for a wide range of applications.

The effort was undertaken on the premise that if sufficient data were available it would be possible to write a curve-fit equation of the form

$$
\mathrm{X}=\mathrm{K} \rho_{\infty}{ }^{\mathrm{a}} \mathrm{R}_{\mathrm{B}}{ }^{\mathrm{b}} \mathrm{~V}_{\infty}{ }^{\mathrm{c}}
$$

where X represents either the heating rate, cooling factor, or the standoff distance and a, b, and c may be allowed to vary with the free-stream conditions and/or body size. This form has been used to correlate convective heating rates (see, e.g., ref. 13), and it is well suited for calculations made with either a slide rule or electronic desk calculator. It can also be readily programed for repetitive calculations on a digital computer.

CURVE-FIT EQUATIONS

Heating Rates

Spherical bodies.- A curve fit of the stagnation-point radiative heating rate q_{R} with the free-stream velocity V_{∞}, free-stream density ρ_{∞}, and the body radius R_{B} was obtained by fitting a multidimensional curve through the spherical body data (cases 1 to 91) in table I. Based on a preliminary analysis, the functional form

$$
\begin{equation*}
q_{R, C}=e^{A_{1} \rho_{\infty}} A_{2}+A_{3} V_{\infty} R_{B} A_{4}+A_{5} V_{\infty}+A_{6} V_{\infty}{ }^{2} V_{\infty} A_{7}+A_{8} V_{\infty}+A_{9} V_{\infty}{ }^{2} \tag{1}
\end{equation*}
$$

was assumed and the constants $A_{1}, A_{2}, . ., A_{9}$ were found by a least-squares analysis. To facilitate application of the least-squares method, equation (1) was first linearized with respect to the A_{i} values by taking logarithms as follows:

$$
\begin{align*}
\ln \mathrm{q}_{\mathrm{R}, \mathrm{C}}= & \mathrm{A}_{1}+\mathrm{A}_{2} \ln \rho_{\infty}+\mathrm{A}_{3} \mathrm{~V}_{\infty} \ln \rho_{\infty}+\mathrm{A}_{4} \ln \mathrm{R}_{\mathrm{B}}+\mathrm{A}_{5} \mathrm{~V}_{\infty} \ln \mathrm{R}_{\mathrm{B}} \\
& +\mathrm{A}_{6} \mathrm{~V}_{\infty}{ }^{2} \ln \mathrm{R}_{\mathrm{B}}+\mathrm{A}_{7} \ln \mathrm{~V}_{\infty}+\mathrm{A}_{8} \mathrm{~V}_{\infty} \ln \mathrm{V}_{\infty}+\mathrm{A}_{9} \mathrm{~V}_{\infty}{ }^{2} \ln \mathrm{~V}_{\infty} \tag{2}
\end{align*}
$$

The error function for the least-squares method is, therefore,

$$
\begin{equation*}
\epsilon_{\mathrm{n}}=\ln q_{R, D}(\mathrm{n})-\ln q_{R, C}(\mathrm{n}) \tag{3}
\end{equation*}
$$

where $q_{R, D}(n)$ is the value of q_{R} corresponding to the nth data point $\left[\rho_{\infty}(n), V_{\infty}(n)\right.$, and $\left.R_{B}(n)\right]$ from table I, and $q_{R, C}(n)$ is the q_{R} value obtained from the curve fit (eq. (1)) for the nth point. The total-error measure in the method is given by

$$
\begin{equation*}
E=\sum_{n=1}^{N} \epsilon_{n}^{2} \tag{4}
\end{equation*}
$$

and is to be minimized with respect to each of the A_{i} values. The minimization leads to a set of linear simultaneous equations for the A_{i} values whose matrix form is as follows:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{ji}} \mathrm{~A}_{\mathrm{i}}=\mathrm{D}_{\mathrm{j}} \tag{5}
\end{equation*}
$$

$$
(i, j=1,2, \ldots, 9)
$$

where the A_{i} values have previously been defined and the coefficient matrix $a_{j i}$ and D_{j} values are given in table II. The elements of the coefficient matrix involve summations of functions involving $\rho_{\infty}(n), R_{B}(n)$, and $V_{\infty}(n)$; and the D_{j} values involve summa-
tions of functions involving $\rho_{\infty}(n), R_{B}(n), V_{\infty}(n)$, and $q_{R, D}(n)$. In each case, the summations are over the N data points. Equation (5) was solved by inverting the coefficient matrix $a_{j i}$. The results for the A_{i} values are given in the appendix, and the results using equation (1) with the A_{i} values are given in table $I I(a)$ for the 91 points used. A comparison of ${ }^{q}{ }_{R, D}$ with ${ }_{R}$, in table III(a) shows an average deviation of approximately 3 percent. Also, of the 91 data points only 3 have deviations larger than 7 percent, and these are for small bodies at high altitudes - conditions for which the calculated radiative heat-transfer rates tend to be very low and the inaccuracy may be large.

Elliptical bodies.- The curve fits presented were based on the data for spherical bodies given in table I. Data are given in table I (cases 102 to 150) for elliptical bodies with axis ratios of 2,4 , and 6 . For the elliptical shapes the free-stream velocity is normal to the semimajor axis and R_{B} is the stagnation-point radius of curvature. When the curve fit for the spherical-body data was applied to the nonspherical-body data, a systematic error appeared which depended on the axis ratio. This error was attributed to the fact that the axis ratio influences the tangential velocity gradient and the shock standoff distance. It was found possible to compensate for this effect by use of a correction factor (called the shape factor) which is a linear function of the axis ratio. The shape factor was obtained by calculating ${ }^{q}{ }_{R, C}$ for each of the nonspherical-body cases by using equation (1) and forming the ratio of $q_{R, C}$ to $q_{R, D}$. These ratios were collected into groups of data corresponding to common axis ratios, and simple averages for each group were determined. The value of $\frac{\overline{q_{R, C}}}{\bar{q}_{R, D}}$ for the spherical bodies (unit axis ratio) was taken to be 1.0. Thus, values for the shape factor were generated for axis ratios of $1,2,4$, and 6. A linear function was assumed for the variation of the shape factor with axis ratio, and a least-squares curve-fit method was used to find the slope and intercept. Figure 3 presents the data used in the shape-factor calculations and the line obtained from the least-squares fit. With the resulting shape factor, the expression for $q_{R, C}$ for nonspherical bodies is

$$
\begin{equation*}
q_{R, C, r}=\frac{q_{R, C}}{(0.955859+0.03645 r)} \tag{6}
\end{equation*}
$$

which is used for $1<\mathrm{r} \leqq 6$. It is noted that the shape factor is not precisely 1.0 at unit axis ratio since this condition was used merely as a data point rather than as a constraint for the curve fit.

The $q_{R, C, r}$ values are compared with the corresponding $q_{R, D}$ values in table $\operatorname{III}(b)$. The results are excellent with an average deviation of 3 percent and a maximum of 8 percent for the cases where R_{B}, ρ_{∞}, and V_{∞} are in the range for which the A_{i} values were originally calculated.

Cooling Factors

A curve fit for the cooling factor F_{C} was derived from the 53 cases in table I for which F_{C} values were given. The curve-fit formula for $\mathrm{F}_{\mathbf{C}}$ as a function of ρ_{∞}, V_{∞}, and R_{B} was obtained in the same manner as that for q_{R}. A function of the form

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C}, \mathrm{C}}=\mathrm{e}^{\mathrm{B}_{1} \rho_{\infty}} \mathrm{B}_{2}+\mathrm{B}_{3} \mathrm{R}_{\mathrm{B}}+\mathrm{B}_{4} \mathrm{R}_{\mathrm{B}}^{2}+\mathrm{B}_{5} \mathrm{R}_{\mathrm{B}}^{3}{ }_{\mathrm{R}_{\mathrm{B}}}^{\mathrm{B}_{6}} \mathrm{~V}_{\infty} \mathrm{B}_{7} \tag{7}
\end{equation*}
$$

was assumed based on a preliminary data analysis. Taking the logarithm of equation (7) and applying the least-squares method resulted in a set of equations for the B_{i} values whose matrix form is as follows:

$$
\begin{equation*}
\mathrm{b}_{\mathrm{ji}} \mathrm{~B}_{\mathrm{i}}=\mathrm{G}_{\mathrm{j}} \tag{8}
\end{equation*}
$$

$$
(i, j=1,2, \ldots, 7)
$$

where the B_{i} values are the constants appearing in equation (7) and the coefficient matrix $b_{j i}$ and G_{j} values are given in table IV. The elements of the coefficient matrix involve summations over the N data points of functions involving $\rho_{\infty}(\mathrm{n}), \mathrm{V}_{\infty}(\mathrm{n})$, and $R_{B}(n)$, whereas the G_{j} values involve summations of functions involving $\rho_{\infty}(n)$, $V_{\infty}(n), R_{B}(n)$, and $F_{C, D}(n)$. Equation (8) was solved by inverting the coefficient matrix $b_{j i}$. The results for the B_{i} values are presented in the appendix, and the results using equation (7) with the B_{i} values to compute $F_{C, C}$ are given in table V. A comparison of $F_{C, C}$ with $F_{C, D}$ is also given. These results for the cooling factor have an average deviation of approximately 3 percent and a maximum deviation of about 10 percent.

Shock Standoff Distances

Spherical bodies.- A curve-fit formula for the shock standoff distance at the stagnation streamline as a function of $\rho_{\infty}, V_{\infty}$, and R_{B} was obtained in the same manner as those for q_{R} and F_{C}. Ninety-one spherical-body cases (cases 1 to 91) were used. A function of the form

$$
\begin{equation*}
{ }^{\delta} C=e^{C_{1}} \rho_{\infty} C_{2}+C_{3} V_{\infty} R_{B} C_{4}+C_{5} V_{\infty} V_{\infty} C_{6}+C_{7} V_{\infty}+C_{8} V_{\infty}^{2} \tag{9}
\end{equation*}
$$

was assumed based on a preliminary analysis of the available standoff-distance data. Again, by taking the logarithm of the assumed function and applying the least-squares method, a set of equations for the C_{i} values was obtained. The matrix form of these equations is as follows:

$$
\begin{equation*}
c_{j i} C_{i}=H_{j} \tag{10}
\end{equation*}
$$

$$
(\mathrm{i}, \mathrm{j}=1,2, \ldots ., 8)
$$

where the C_{i} values are the constants appearing in equation (9) and the coefficient matrix $c_{j i}$ and H_{j} values are given in table VI. The elements of the coefficient matrix involve summations over the N data points of functions involving $\rho_{\infty}(n), \quad R_{B}(n)$, and $V_{\infty}(n)$; whereas the H_{j} values involve summations of functions involving $\rho_{\infty}(n)$, $R_{B}(n), V_{\infty}(n)$, and $\delta_{D}(n)$. Equation (10) was solved by inverting the matrix $c_{j i}$, and the C_{i} values are given in the appendix. Table VII(a) gives a comparison of the original standoff-distance data δ_{D} with ${ }^{\delta} \mathrm{C}$ values calculated by using equation (9) and the derived C_{i} values. The results show that when compared to δ_{D} the corresponding ${ }^{\delta} \mathrm{C}$ values have an average deviation of about 1 percent with a maximum deviation of about 5 percent.

Elliptical bodies.- A shape factor for the standoff distance for the nonsphericalbody cases was derived in the same manner as that for the heating-rate correlation. The resultant expression for the shock standoff distance for the elliptical bodies is

$$
\begin{equation*}
{ }^{\delta} \mathrm{C}, \mathrm{r}=\frac{{ }^{\delta} \mathrm{C}}{(0.825784+0.14816 \mathrm{r})} \tag{11}
\end{equation*}
$$

which is applied for $1<\mathrm{r} \leqq 6$. The data from which the shape factor for equation (11) was derived are shown in figure 4. The comparison of ${ }^{\delta} \mathrm{C}, \mathrm{r}$ with $\delta_{\mathrm{D}, \mathrm{r}}$ given in table VII(b) shows that the curve-fit values have an average deviation of 4 percent compared to the original data.

DISCUSSION

As shown in tables $I I, V$, and VII the curve-fit equations give good representations of the basic data (table I) in the ranges specified in the appendix. In this section the basic data and/or the curve fits will be compared with other available data. In addition, the cooling-factor curve fit was studied extensively in order to establish its sensitivity to out-of-range conditions. The results of this study are also presented.

Heating Rates

Radiative heat-transfer calculations are known to be significantly influenced by both the flow-field calculation technique and the radiation transfer model. The basic data (table I) for heating rate and standoff distance were calculated by using the one-strip integral technique of reference 3 , which includes the radiation model of reference 10. Results from calculations using these techniques have been compared with several other methods and these comparisons have been published (e.g., refs. 3, 7, and 8). The general finding is that the one-strip integral technique produces results which compare very well
with other techniques, provided that the same radiation model is used. Thus, it can be concluded that the fluid mechanics of the method are adequate.

The effects resulting from the use of different radiation models have also been explored (refs. 3 and 11). It has been found that the calculated heating rates for a given set of conditions can differ by 50 percent or more. This result is not surprising when one considers the diversity in the amount of detail programed into various radiation models. In view of the lack of experimental data, at the conditions of interest here, it is difficult to assess which of the available radiation models gives the most accurate results and which provides the best compromise between accuracy and required computer time. For these reasons the present heating-rate results are not compared with previously published values. Instead, such comparisons will be made on a cooling-factor basis in the next section.

Cooling Factors

As indicated in the "Introduction," Olstad (ref. 9) has shown that when the cooling factor F_{C} is taken as a basis, good agreement is obtained between results calculated by using different radiation models. Therefore, the F_{C} curve fit of the present report will be compared to the charts of F_{C} presented by Olstad in reference 9 . It is emphasized that to derive heating rates from F_{C} values a companion calculation of the adiabatic radiative heating rate is required. That is,

$$
\begin{equation*}
\left({ }^{q_{R}}\right)_{\text {nonadiabatic }}=F_{C}\left({ }^{q_{R}}\right)_{\text {adiabatic }} \tag{12}
\end{equation*}
$$

and $\left(q_{R}\right)_{\text {adiabatic }}$ does not require a time-consuming coupled flow-field solution. Since F_{C} is relatively insensitive to the radiation model (ref. 9), this allows the user to select the model most appropriate to his purpose to determine the adiabatic value. If the user desires to accept the radiation model applied in the calculation of the basic data of this report, he can simply use the heating-rate curve fit presented herein.

The basic data have been curve fitted wherever possible (the 53 cases having F_{C} values in table I) in terms of F_{C}; the resulting curve-fit equation is given in the appendix. It can be seen (table V) that the agreement between the basic data and the curve fit is excellent with a maximum error of approximately 10 percent. As an independent check, a large number (180) of cooling-factor values were calculated by using the curve-fit equation (eq. (7)) and compared with the curves given in reference 9. Figures 5, 6, and 7 show the results of these calculations. Note that some calculations shown in the figures are out of the range of the correlation. This was done to show the sensitivity of the curve fit. (The calculations also included cases with $R_{B}=800 \mathrm{~cm}$; however, they produced an unreasonably small F_{C} and have not been plotted.) In figure 5 it is seen that the values
from the curve fit for those cases where all three parameters are within the ranges specified in the appendix are in excellent agreement with the results of reference 9. The maximum difference is approximately 17 percent for one case of a $30-\mathrm{cm}$ body at an altitude near the upper limit of the altitude range. The values from figures 5,6 , and 7 for cases where one or more of the parameters are out of range show that the curve fit is most sensitive to body size and least sensitive to velocity.

In view of the results shown in figures 5, 6, and 7, the authors believe that the cooling-factor curve fit is accurate provided the ranges specified in the appendix are not exceeded.

Shock Standoff Distances

Figure 8 presents a comparison of the shock standoff distances from the basic data (table I), the curve-fit equation (the appendix), and the results of Callis (ref. 6) for $\rho_{\infty}=1.225 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}$ and for $\mathrm{V}_{\infty}=15.24 \mathrm{~km} / \mathrm{sec}$ and $12.19 \mathrm{~km} / \mathrm{sec}$. The basic data do not contain identically corresponding results, and, therefore, data for the closest conditions ($\rho_{\infty}=1.2959 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{V}_{\infty}=15 \mathrm{~km} / \mathrm{sec}$ and $12 \mathrm{~km} / \mathrm{sec}$) are given. It is seen from figure 8 that these slight variations in V_{∞} and ρ_{∞} have little effect on the comparison. The comparison shows that the curve-fit equation gives an excellent representation of the basic data and, although the trends are different, the basic data and the results of Callis agree within 10 percent or less. A more detailed comparison between the two methods (i.e., Suttles (ref. 3) and Callis (ref. 6)) is given in reference 3, where it is shown that the differences between radiation models can account for a significant difference in the results. Therefore, the variation in the trends of the results in figure 8 are most probably due to the different radiation models used.

Some comparisons were made (but not shown here) between the results of the present work and the results of Callis for bodies smaller ($R_{B}=1$ to 30 cm) and for bodies larger ($R_{B}=450$ to 1000 cm) than those considered in the curve fits. This comparison indicated that for bodies in the range of R_{B} from 10 to 30 cm , the results remained in good agreement (10 percent or less); but for smaller bodies and bodies larger than 450 cm , the results began to deviate significantly. It is concluded that, as in the case of the cooling-factor curve fit, the user should be very hesitant in applying the shock-standoffdistance curve fit outside the range of the basic data.

CONCLUDING REMARKS

Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data on which the curve fits are based were calculated by using a technique which utilizes a one-strip integral method
and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to $16 \mathrm{~km} / \mathrm{sec}$. Spherical bodies with nose radii of from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2,4 , and 6 were treated.

Power-law formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent. A study of the sensitivity of the formulas indicates that they should be used only within the range of the free stream and vehicle geometry parameters of the data. These curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., April 30, 1974.

APPENDIX

CURVE-FIT FORMULAS AND RELATED PARAMETERS

For the convenience of the reader, the curve-fit formulas, the constants derived for the formulas, the ranges of applicability of the formulas, and the average deviation of the formulas from the basic data are listed in this appendix.

Heating Rates

Formula.- The formula for $q_{R, C}$ in W / cm^{2} is

$$
q_{R, C}=K_{r} e^{A_{1}} \rho_{\infty} A_{2}+A_{3} V_{\infty} R_{B} A_{4}+A_{5} V_{\infty}+A_{6} V_{\infty}^{2} V_{\infty} A_{7}+A_{8} V_{\infty}+A_{9} V_{\infty}^{2}
$$

Derived constants.-

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{r}}= \begin{cases}\frac{1}{(0.955859+0.03645 \mathrm{r})} & (\mathrm{r} \neq 1) \\
1 & (\mathrm{r}=1)\end{cases} \\
\mathrm{A}_{1}=-69.099 & \mathrm{~A}_{6}=0.005381 \\
\mathrm{~A}_{2}=1.320 & \mathrm{~A}_{7}=51.89 \\
\mathrm{~A}_{3}=-0.01223 & \mathrm{~A}_{8}=-1.558 \\
\mathrm{~A}_{4}=1.688 & \mathrm{~A}_{9}=0.02659 \\
\mathrm{~A}_{5}=-0.1796 &
\end{array}
$$

Ranges of applicability.
$\rho_{\infty}=1.078 \times 10^{-7}$ to $6.53 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}$
Altitude $=53.75$ to 68.4 km
$R_{B}=30$ to 450 cm
$\mathrm{V}_{\infty}=11$ to $16 \mathrm{~km} / \mathrm{sec}$
$r=1$ to 6

APPENDIX

Average deviation.- 3 percent

Cooling Factors
Formula.- The cooling factor $\mathrm{F}_{\mathrm{C}, \mathrm{C}}$ is dimensionless and is given by

$$
F_{C, C}=e^{B_{1}} \rho_{\infty}{ }^{B_{2}+B_{3} R_{B}+B_{4} R_{B}{ }^{2}+B_{5} R_{B}{ }^{3}{ }_{R_{B}}{ }_{6}^{B_{6}} V_{\infty}{ }^{B_{7}}}
$$

Derived constants.-

$$
\begin{array}{ll}
\mathrm{B}_{1}=-3.679 & \mathrm{~B}_{5}=0.000000005567 \\
\mathrm{~B}_{2}=-0.3598 & \mathrm{~B}_{6}=1.059 \\
\mathrm{~B}_{3}=0.002024 & \mathrm{~B}_{7}=-1.931 \\
\mathrm{~B}_{4}=-0.000005583 &
\end{array}
$$

Ranges of applicability.-

$$
\rho_{\infty}=5.61 \times 10^{-7} \text { to } 8.75 \times 10^{-8} \mathrm{~g} / \mathrm{cm}^{3}
$$

$$
\text { Altitude }=55 \text { to } 70 \mathrm{~km}
$$

$$
\mathrm{R}_{\mathrm{B}}=30 \text { to } 450 \mathrm{~cm}
$$

$$
\mathrm{V}_{\infty}=11 \text { to } 16 \mathrm{~km} / \mathrm{sec}
$$

Average deviation.- 3 percent

Shock Standoff Distances

Formula.- The formula for shock standoff distance in cm is

$$
{ }^{\delta} \mathrm{C}=\mathrm{K}_{\mathrm{r}, \delta} \mathrm{e}^{\mathrm{C}_{1_{1}}} \mathrm{C}_{\infty}+\mathrm{C}_{3} \mathrm{v}_{\infty} \mathrm{R}_{\mathrm{B}} \mathrm{C}_{4}+\mathrm{C}_{5} \mathrm{~V}_{\infty} \mathrm{V}_{\infty} \mathrm{C}_{6}+\mathrm{C}_{7} \mathrm{v}_{\infty}+\mathrm{C}_{8} \mathrm{~V}_{\infty}{ }^{2}
$$

Derived constants.-

$$
\mathrm{K}_{\mathrm{r}, \delta}=\left\{\begin{array}{cc}
\frac{1}{(0.825784+0.14816 \mathrm{r})} & (\mathrm{r} \neq 1) \\
1 & (\mathrm{r}=1)
\end{array}\right.
$$

APPENDIX

$C_{1}=-3.697$
$C_{5}=-0.01248$
$C_{2}=0.07375$
$C_{6}=0.7718$
$C_{3}=-0.003338$
$C_{7}=-0.02572$
$C_{4}=1.134$
$C_{8}=0.00009347$

Ranges of applicability.-

$$
\begin{aligned}
& \rho_{\infty}=1.078 \times 10^{-7} \text { to } 6.53 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3} \\
& \text { Altitude }=53.75 \text { to } 68.4 \mathrm{~km} \\
& \mathrm{R}_{\mathrm{B}}=30 \text { to } 450 \mathrm{~cm} \\
& \mathrm{~V}_{\infty}=11 \text { to } 16 \mathrm{~km} / \mathrm{sec} \\
& \mathrm{r}=1 \text { to } 6
\end{aligned}
$$

Average deviation.- 2 percent

REFERENCES

1. Lovelace, Uriel M.: Charts Depicting Kinematic and Heating Parameters for a Ballistic Reentry at Speeds of 26,000 to 45,000 Feet Per Second. NASA TN D-968, 1961.
2. Anderson, John D., Jr.: An Engineering Survey of Radiating Shock Layers. AIAA J., vol. 7, no. 9, Sept. 1969, pp. 1665-1675.
3. Suttles, John T.: A Method of Integral Relations Solution for Radiating, Nonadiabatic, Inviscid Flow Over a Blunt Body. NASA TN D-5480, 1969.
4. Olstad, Walter B.: Blunt-Body Stagnation-Region Flow With Nongray Radiation Heat Transfer - A Singular Perturbation Solution. NASA TR R-295, 1968.
5. Page, William A.; Compton, Dale L.; Borucki, William J.; Ciffone, Donald L.; and Cooper, David M.: Radiative Transport in Inviscid Nonadiabatic Stagnation-Region Shock Layers. AIAA Paper No. 68-784, June 1968.
6. Callis, Linwood B.: Solutions of Blunt-Body Stagnation-Region Flows With Nongray Emission and Absorption of Radiation by a Time-Asymptotic Technique. NASA TR R-299, 1969.
7. Falanga, Ralph A.; and Sullivan, Edward M.: An Inverse-Method Solution for Radiating, Nonadiabatic, Equilibrium Inviscid Flow Over a Blunt Body. NASA TN D-5907, 1970.
8. Garrett, L. Bernard; Smith, G. Louis; and Perkins, John N.: An Implicit FiniteDifference Solution to the Viscous Shock Layer, Including the Effects of Radiation and Strong Blowing. NASA TR R-388, 1972.
9. Olstad, Walter B.: Correlations for Stagnation-Point Radiative Heat Transfer. AIAA J., vol. 7, no. 1, Jan. 1969, pp. 170-172.
10. Wilson, K. H.: RATRAP - A Radiation Transport Code. 6-77-67-12, Lockheed Missiles \& Space Co., Mar. 14, 1967.
11. Suttles, John T.: Comparison of the Radiation Flux Profiles and Spectral Detail From Three Detailed Nongray Radiation Models at Conditions Representative of Hypervelocity Earth Entry. NASA TM X-2447, 1972.
12. Sullivan, Edward M.; Erickson, Wayne D.; Smith, G. Louis; and Suttles, John T.: Some Aspects of Interplanetary Earth-Entry Simulation. Paper presented at 15th Annual Meeting of the Institute of Environmental Sciences (Anaheim, Calif.), Apr. 1969.
13. Detra, R. W.; Kemp, N. H.; and Riddell, F. R.: Addendum to 'Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere.' Jet Propulsion, vol. 27, no. 12, Dec. 1957, pp. 1256-1257.

TABLE I.- BASIC DATA

Case	$\begin{gathered} \mathrm{V}_{\infty}, \\ \mathrm{km} / \mathrm{sec} \end{gathered}$	Alt., km	$\begin{gathered} \rho_{\infty} \\ \mathrm{g} / \mathrm{cm}^{\prime} 3 \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{B}} \\ \mathrm{~cm} \end{gathered}$	Axis ratio	$\begin{aligned} & \delta_{\mathrm{D}}, \\ & \mathrm{~cm} \end{aligned}$	$\begin{gathered} \mathrm{q}_{\mathrm{R}, \mathrm{D}}, \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	$\mathrm{F}_{\mathrm{C}, \mathrm{D}}$
1	11.000	58.0	3.9072 $\mathrm{E}-07$	30.00	1.0	1.421	306.0	-
2	11.000	58.0	3.9072E-07	150.00	1.0	7.036	544.0	-
3	11.000	58.0	3.9072E-C7	300.00	1.0	13.974	661.0	-
4	11.000	58.0	3.9072E-07	450.00	1.0	20.844	752.0	-
5	13.000	58.0	$3.9072 \because-07$	30.00	1.0	1.368	1607.0	. 582
0	13.000	58.0	3.9072E-c7	150.00	1.0	6.680	2263.0	-
7	15.000	58.0	3.9072E-C7	300.00	1.0	12.887	2699.0	-
-	13.000	58.0	$3.9072 \mathrm{E}-07$	450.00	1.0	18.971	3080.0	-
9	14.000	58.0	3.9072E-07	30.00	1.0	1.339	2578.0	. 508
10	14.000	58.0	3.9072E-07	150.00	1.0	6.374	3537.0	-
11	14.000	58.0	3.9072E-C7	300.00	1.0	12. 268	4289.0	. 307
12	$1+.000$	58.0	3.9072E-07	450.00	1.0	17.943	4816.0	. 285
13	15.000	58.0	3.9072E-07	30.00	1.0	1.308	3709.0	. 452
14	15.000	58.0	3.9072E-C7	150.00	1.0	6.093	5124.0	. 298
15	15.000	58.0	3.9072E-C7	300.00	1.0	11.611	6108.0	. 268
16	15.000	58.0	3.9072E-C7	450.00	1.0	16.850	6917.0	. 252
17	16.000	58.0	3.9072E-07	30.00	1.0	1.277	5462.0	. 401
18	16.000	58.0	3.9072E-07	150.00	1.0	5.830	7039.0	. 261
19	16.000	58.0	3.9072E-07	300.00	1.0	11.011	8176.0	.231
20	16.000	58.0	3.9072E-07	450.0C	1.0	15.873	9382.0	. 224
21	11.000	61.0	2.7018E-C7	30.00	1.0	1.397	194.0	. 812
22	11.000	61.0	2.7018E-07	150.00	1.0	6.921	365.0	. 626
23	11.000	61.0	2.7018E-07	300.00	1.0	13.725	447.0	. 541
24	11.000	61.0	$2.7018 \mathrm{E}-07$	450.00	1.0	20.464	509.0	. 509
25	12.000	61.0	2.7018E-07	30.00	1.0	1.378	520.0	. 710
26	12.000	61.0	L.7018E-07	150.00	1.0	6.760	843.0	.497
27	12.000	61.0	2.7018E-07	300.00	1.0	13.390	958.0	. 412
28	12.000	61.0	$2.7018 \mathrm{E}-\mathrm{C} 7$	450.00	1.0	19.844	1087.0	. 383
29	13.000	61.0	2.7018E-07	30.00	1.0	1.348	1027.0	.630
30	13.000	61.0	$2.7018 \mathrm{E}-07$	150.00	1.0	6.640	1545.0	. 429
31	13.000	61.0	$2.7018 \mathrm{E}-07$	300.00	1.0	12.710	1786.0	. 361
32	13.000	61.0	$2.7018 \mathrm{E}-07$	450.00	1.0	18.800	1951.0	. 327
33	14.000	61.0	2.7018E-C7	30.00	1.0	1.319	1737.0	. 566
34	14.000	61.0	2.7018E-07	150.00	1.0	6.280	2353.0	. 356
35	14.000	61.0	2.7018E-07	300.00	1.0	12.090	2839.0	. 318
36	14.000	61.0	2.7018E-07	450.00	1.0	17.660	3243.0	. 303
37	15.000	61.0	2.7018E-07	30.00	1.0	1.287	2656.0	. 514
38	15.000	61.0	2.7018E-07	150.00	1.0	5.995	3471.0	. 314
39	15.000	61.0	2.7018E-07	300.00	1.0	11.440	4154.0	. 282
40	15.000	61.0	$2.7018 \mathrm{E}-07$	450.00	1.0	16.850	4690.0	. 268

TABLE I.- BASIC DATA - Continued

Case	$\begin{gathered} \mathrm{V}_{\infty}, \\ \mathrm{km} / \mathrm{sec} \end{gathered}$	Alt., km	$\begin{gathered} \rho_{\infty}, \\ \mathrm{g} / \mathrm{cm} 3 \end{gathered}$	$\underset{\mathrm{Cm}}{\mathrm{R}_{\mathrm{B}}}$	Axis ratio	$\begin{aligned} & \delta_{\mathrm{D}} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{\mathrm{R}, \mathrm{D}} \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	$\mathrm{F}_{\mathrm{C}, \mathrm{D}}$
41	16.000	61.0	2.7018E-C7	30.00	1.0	1.256	3778.0	.466
42	16.000	61.0	2.7018E-07	150.00	1.0	5.713	4771.0	. 272
43	16.000	61.0	2.7018E-07	300.00	1.0	10.920	5362.0	. 233
44	16.000	61.0	2.7018E-07	450.00	1.0	15.550	6174.0	. 227
45	11.000	67.0	1.2959E-C7	30.00	1.0	1.360	70.0	-
46	11.000	67.0	$1.2959 \mathrm{E}-07$	150.00	1.0	6.754	149.0	-
47	11.000	67.0	1.2959E-C7	3 CO .00	1.0	13.445	190.0	-
48	11.000	67.0	1.2959E-07	450.00	1.0	20.019	215.0	-
49	12.000	67.0	1.2959E-C7	30.00	1.0	1.342	194.0	-
50	12.000	67.0	1.2959 E-07	150.00	1.0	6.597	363.0	-
51	12.000	67.0	1.2959E-07	300.00	1.0	13.045	442.0	-
52	12.000	67.0	$1.2959 \mathrm{E}-07$	450.00	1.0	19.392	490.0	-
53	13.000	67.0	1.2959E-07	30.00	1.0	1.317	390.0	-
54	13.000	67.0	1.2959E-07	150.00	1.0	6.392	674.0	-
55	13.000	67.0	1.2959E-07	300:00	1.0	12.525	796.0	-
56	13.000	67.0	1.2959E-07	450.00	1.0	18.498	860.0	-
57	14.000	67.0	1.2959E-07.	30.00	1.0	1.292	688.0	-
58	14.000	67.0	1.2959E-07	150.00	1.0	6.194	1079.0	-
59	14.000	67.0	1.2959E-07	300.00	1.0	12.022	1218.0	-
60	14.000	67.0	1.2959E-07	450.00	1.0	17.636	1347.0	-
61	15.000	67.0	1.2959E-C7	30.00	1.0	1.268	1064.0	.620
52	15.000	67.0	1.2959E-07	150.00	1.0	5.980	1576.0	. 362
63	15.000	67.0	1.2959E-07	300.00	1.0	11.470	1750.0	. 291
64	15.000	67.0	1.2959E-07	450.00	1.0	16.710	1913.0	. 269
65	16.000	67.0	L. $2959 \mathrm{E}-07$	30.00	1.0	1.242	1531.0	-
66	16.000	67.0	1.2959E-C7	150.00	1.0	5.756	2150.0	-
67	16.000	67.0	1.2959E-07	300.00	1.0	10.920	2360.0	-
68	16.000	67.0	1.2959E-07	450.00	1.0	14.850	2450.0	-
69	13.000	55.0	$5.6080 E-C 7$	30.00	1.0	1.394	2388.0	-
70	13.000	55.0	5.6080E-07	150.00	1.0	6.725	3411.0	-
71	13.000	55.0	5.6080E-07	300.00	1.0	13.064	4156.0	\rightarrow
72	13.000	55.0	5.6080E-07	450.00	1.0	19.194	4752.0	-
73	15.000	55.0	$5.6080 \mathrm{E}-\mathrm{C} 7$	30.00	1.0	1.332	5851.0	-
74	15.000	55.0	$5.6080 \varepsilon-07$	150.00	1.0	6.209	7632.0	. 291
75	15.000	55.0	$5.6080 E-07$	300.00	1.0	11.770	9381.0	. 268
76	15.000	55.0	$5.6080 \mathrm{E}-07$	450.00	1.0	17.040	10877.0	. 255
77	16.000	55.0	5.6080E-C7	30.00	1.0	1.298	8247.0	
78	16.000	55.0	$5.6080 \mathrm{E}-07$	150.00	1.0	5.895	10294.0	-
79	16.000	55.0	$5.6080 \mathrm{E}-\mathrm{C} 7$	300.00	1.0	11.070	12360.0	-
80	16.000	55.0	$5.6080 E-07$	450.00	1.0	15.918	14314.0	-

TABLE I.- BASIC DATA - Continued

Case	$\begin{gathered} \mathbf{V}_{\infty} \\ \mathrm{km} / \mathrm{sec} \end{gathered}$	Alt., km	$\begin{gathered} \rho_{\infty} \\ \mathrm{g} / \mathrm{cm} 3 \end{gathered}$	$\underset{\mathrm{cm}}{\mathrm{R}_{\mathrm{B}}}$	Axis ratio	$\begin{aligned} & \delta_{\mathrm{D}}, \\ & \mathrm{~cm} \end{aligned}$	$\begin{gathered} \mathrm{q}_{\mathrm{R}, \mathrm{D}} \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	$F_{C, D}$
81	15.025	68.3	1.0780E-07	342.70	1.0	12.978	1542.0	-
82	14.897	66.3	1.4270 E-07.	342.70	1.0	13.040	2036.0	-
83	14.737	64.7	$1.7580 \mathrm{E}-07$	342.70	1.0	13.243	2348.0	-
84	14.549	63.4	$2.0170 E-07$	342.70	1.0	13.383	2616.0	-
85	14.346	62.9	$2.1600 E-C 7$	342.70	1.0	13.535	2618.0	-
86	14.161	62.8	2.1680E-07	342.70	1.0	13.669	2435.0	-
87	13.560	62.8	$2.1680 E-07$	342.70	1.0	14.068	1892.0	-
88	13.650	63.5	2.0259E-07	60.96	1.0	2.634	1210.0	-
89	13.169	59.3	3.3412E-C7	60.96	1.0	2.716	1732.0	-
90	12.845	57.4	4.2147E-07	60.96	1.0	2.766	1883.0	-
91	12.009	53.7	6.5255E-C7	60.96	1.0	2.904	1771.0	-
92	15.000	59.5	3.2535E-07	150.00	1.0	6.079	4187.0	. 304
93	15.000	59.5	3.2535E-C7	3 CO .00	1.0	11.608	4936.0	. 268
94	15.000	59.5	3.2535E-07	450.00	1.0	16.870	5531.0	. 252
95	15.000	64.0	$1.8837 \mathrm{E}-07$	150.00	1.0	6.015	2311.0	. 328
96	15.000	64.0	$1.8837 \mathrm{E}-07$	300.00	1.0	11.530	2582.0	. 272
97	15.000	64.0	1.8837E-07	450.00	1.0	16.625	2854.0	. 253
98	15.000	70.0	$8.7535 \mathrm{E}-08$	30.00	1.0	1.258	635.0	. 692
99	15.000	70.0	8.7535E-08	150.00	1.0	5.944	1031.0	.413
100	15.000	70.0	8.7535E-08	300.00	1.0	11.468	1169.0	. 324
101	15.000	70.0	8.7535E-C8	450.00	1.0	16.599	1252.0	. 289
102	13.650	63.5	2.0259E-07	121.92	2.0	4.688	1514.0	
103	13.169	59.3	3.3412E-07	121.92	2.0	4.843	2090.0	-
104	12.845	57.4	4.2147E-07	121.92	2.0	4.934	2230.0	-
105	12.458	55.5	5.2997E-C7	121.92	2.0	5.044	2236.0	-
106	12.009	53.7	$6.5255 \mathrm{E}-07$	121.92	2.0	5.173	2092.0	-
101	11.499	52.0	8.0413E-07	121.92	2.0	5.290	1723.0	-
108	13.650	63.5	2.0259E-07	243.84	4.0	7.268	1639.0	-
109	13.169	59.3	3.3412E-C7	243.84	4.0	7.501	2210.0	-
110	12.845	57.4	$4.2147 \mathrm{E}-07$	243.84	4.0	7.625	2419.0	-
111	12.458	55.5	5.2997E-07	243.84	4.0	7.783	2480.0	-
112	12.009	53.7	$6.5255 \mathrm{E}-07$	243.84	4.0	7.978	2325.0	-
113	11.499	52.0	8.0413E-07	243.84	4.0	8.242	1966.0	-
114	13.650	63.5	$2.0259 \mathrm{E}-07$	365.76	6.0	8.728	1720.0	-
115	13.169	59.3	3.3412E-07	365.76	6.0	8.963	2331.0	-
116	12.845	57.4	$4.2147 E-07$	365.76	6.0	9.178	2553.0	-
117	12.458	55.5	5.2997E-07	365.76	6.0	9.352	2628.0	-
118	12.009	53.7	$6.5255 \mathrm{E}-07$	365.76	6.0	9.575	2512.0	-
119	11.499	52.0	8.0413E-07	365.76	6.0	9.800	2263.0	-
120	13.580	64.2	1.8447E-07	243.70	4.0	6.994	1375.0	-

TABLE I.- BASIC DATA - Concluded

Case	$\begin{gathered} \mathrm{V}_{\infty} \\ \mathrm{km} / \mathrm{sec} \end{gathered}$	Alt., km	$\begin{gathered} \rho_{\infty}, \\ \mathrm{g} / \mathrm{cm} 3 \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{B}} \\ \mathrm{~cm} \end{gathered}$	Axis ratio	$\begin{aligned} & \delta_{\mathrm{D}}, \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{\mathrm{R}, \mathrm{D}} \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	$\mathrm{F}_{\mathrm{C}, \mathrm{D}}$
121	13.232	60.1	3.0232E-C7	243.70	4.0	7.195	2041.0	-
122	12.701	56.2	$4.8433 E-07$	243.70	4.0	7.423	2570.0	-
123	11.949	52.6	7.4351E-C7	243.70	4.0	7.791	2565.0	-
$1 \angle 4$	10.963	49.3	1.1199E-06	243.70	4.0	8.134	1612.0	-
125	12.700	59.2	3.3958E-07	179.83	4.0	5.644	1650.0	-
126	12.254	55.4	5.3436E-07	179.83	4.0	5.817	2049.0	-
127	11.611	51.9	8.1349E-07	179.83	4.0	6.063	1994.0	-
128	13.161	61.0	$2.6849 \mathrm{E}-07$	231.64	4.0	7.094	1800.0	-
129	12.767	57.1	$4.3343 E-C 7$	231.64	4.0	7.37 C	2365.0	-
130	12.190	53.4	6.7347E-07	231.64	4.0	7.545	2703.0	-
131	11.398	50.0	1.0247E-06	231.64	4.0	7.947	2339.0	-
132	13.467	64.2	$1.8330 \mathrm{E}-07$	262.12	4.0	7.840	1327.0	-
133	12.909	59.2	3.3693E-07	262.12	4.0	8.073	1964.0	-
134	12.220	55.5	5.2983E-07	262.12	4.0	8.408	2168.0	-
135	11.295	52.0	7.9770E-07	262.12	4.0	8.847	1635.0	-
136	13.050	61.1	2.6667E-07	252.98	4.0	7.724	1652.0	-
137	12.592	57.2	$4.2847 E-07$	252.98	4.0	8.220	2169.0	-
138	11.932	53.6	6.6135E-07	252.98	4.0	8.336	2255.0	-
139	11.052	50.3	9.9419E-07	252.98	4.0	8.695	1607.0	-
140	12.700	59.2	3.3938E-07	-249.94	4.0	7.788	1763.0	-
141	12.254	55.4	5.3436E-C7	249.94	4.0	8.013	2219.0	-
142	11.611	51.9	8.1349E-07	249.94	4.0	8.396	2206.0	-
143	13.016	62.0	2.3774E-C7	231.64	4.0	7.075	1374.0	-
144	12.723	58.1	3.8424E-07	231.64	4.0	7.276	2009.0	-
145	12.281	54.4	6.0208E-07	231.64	4.0	7.484	2534.0	-
146	11.656	50.9	9.2060E-07	231.64	4.0	7.845	2589.0	-
147	10.819	47.6	1.3803E-06	231.64	4.0	8.238	1719.0	-
148	12.909	59.2	3.3693E-07	179.83	4.0	5.594	1829.0	-
149	12.220	55.5	5.2983E-C7	179.83	4.0	5.820	1976.0	-
150	11.931	56.6	4.6395E-07	219.46	4.0	7.114	1444.0	-

(a) Matrix elements \mathbf{a}_{ji}

*The symbol N represents the total number of data points, and all summations are from 1 to N; that is, $\sum_{n=1}$.
(b) Constant vector D_{j}

$$
\mathrm{D}_{\mathrm{j}}=\left\{\begin{array}{l}
\sum \ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \\
\sum\left(\ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \ln \rho_{\infty}\right) . \\
\sum\left(\mathrm{v}_{\infty} \ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \ln \rho_{\infty}\right) \\
\sum\left(\ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \ln \mathrm{R}_{\mathrm{B}}\right) \\
\sum\left(\mathrm{v}_{\infty} \ln \mathrm{a}_{\mathrm{R}, \mathrm{D}} \ln \mathrm{R}_{\mathrm{B}}\right) \\
\sum\left(\mathrm{v}_{\infty}{ }^{2} \ln \mathrm{q}_{\mathrm{R}, \mathrm{D}}{ }^{\left.\ln \mathrm{R}_{\mathrm{B}}\right)}\right. \\
\sum\left(\ln _{\mathrm{R}, \mathrm{D}} \ln \mathrm{v}_{\infty}\right) \\
\sum\left(\mathrm{v}_{\infty} \ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \ln \mathrm{v}_{\infty}\right) \\
\sum\left(\mathrm{v}_{\infty}{ }^{2} \ln \mathrm{q}_{\mathrm{R}, \mathrm{D}} \ln \mathrm{v}_{\infty}\right)
\end{array}\right\}
$$

TABLE III.- COMPARISON OF BASIC DATA AND CURVE-FIT RESULTS FOR HEATING RATE

$q_{R, C}$,	Error,
$W / \mathrm{cm} 2$	percent

 (a) Spherical bodies
Axis
ratio

مُ̂

 ρ_{∞},
$g / \mathrm{cm}^{3} 3$

 Alt.,
km
 V_{∞},
km / \sec

Case

(a) Spherical bodies - Continued
$\underset{\mathrm{cm}}{\mathrm{R}_{\mathrm{B}},} \quad \underset{\text { ratio }}{\text { Axis }}$

NOMNNNNo
 $\rightarrow n \rightarrow-1 \rightarrow N N N N N N M m M m m M N N N N=$

Alt.,
km

(b) Nonspherical bodies - Concluded

$$
\begin{aligned}
& { }^{\mathrm{q}} \mathrm{R}, \mathrm{C}^{\prime} \\
& \mathrm{W} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
>^{8} \underset{\underset{y y y}{8}}{\substack{0 \\ \sim}}
$$

(a) Matrix elements $b_{j i}$

	1	2	3	4	5	6	7
1	${ }^{*} \mathrm{~N}$	$\sum \ln \rho_{\infty}$	$\sum\left(\mathrm{R}_{\mathrm{B}} \ln \rho_{\infty}\right)$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{2} \ln \rho_{\infty}\right)$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{3} \ln \rho_{\infty}\right)$	$\sum \ln \mathrm{R}_{\mathrm{B}}$	$\sum \ln \mathrm{V}_{\infty}$
2		$\sum\left(\ln \rho_{\infty}\right)^{2}$	$\sum\left[\mathrm{R}_{\mathrm{B}}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(R_{B} \ln \rho_{\infty}\right)^{2}$	$\sum\left[\mathrm{R}_{\mathrm{B}}{ }^{3}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\ln \rho_{\infty} \ln V_{\infty}\right)$
3			$\sum\left(R_{B} \ln \rho_{\infty}\right)^{2}$	$\sum\left[\mathrm{R}_{\mathrm{B}}{ }^{3}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left[R_{B}^{4}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\mathrm{R}_{\mathrm{B}} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{R}_{\mathrm{B}} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$
4		5	$H_{\Delta s}$	$\sum\left[\mathrm{R}_{\mathrm{B}}{ }^{4}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left[R_{B} 5\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{2} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{2} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$
5			${ }^{2} R_{1}$		$\sum\left[\mathrm{R}_{\mathrm{B}}{ }^{6}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{3} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{3} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$
6				b_{i}		$\sum\left(\ln R_{B}\right)^{2}$	$\sum\left(\ln v_{\infty} \ln R_{B}\right)$
7							$\sum\left(\ln \mathrm{V}_{\infty}\right)^{2}$

*The symbol N represents the total number of data points, and all summations are from 1 to N; that is, $\sum_{n=1}^{N}$.
(b) Constant vector G_{j}

$$
\mathrm{G}_{\mathrm{j}}=\left\{\begin{array}{l}
\sum \ln \mathrm{F}_{\mathrm{C}, \mathrm{D}} \\
\sum\left(\ln _{\mathrm{C}, \mathrm{D}} \ln \rho_{\infty}\right) \\
\sum\left(\mathrm{R}_{\mathrm{B}} \ln \mathrm{~F}_{\mathrm{C}, \mathrm{D}} \ln \rho_{\infty}\right) \\
\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{2} \ln \mathrm{~F}_{\mathrm{C}, \mathrm{D}} \ln \rho_{\infty}\right) \\
\sum\left(\mathrm{R}_{\mathrm{B}}{ }^{3} \ln \mathrm{~F}_{\mathrm{C}, \mathrm{D}} \ln \rho_{\infty}\right) \\
\sum\left(\ln \mathrm{F}_{\mathrm{C}, \mathrm{D}} \ln \mathrm{R}_{\mathrm{B}}\right) \\
\sum\left(\ln \mathrm{F}_{\mathrm{C}, \mathrm{D}} \ln \mathrm{~V}_{\infty}\right)
\end{array}\right\}
$$

TABLE V.- COMPARISON OF BASIC DATA AND CURVE-FIT RESULTS FOR COOLING FACTOR

Error,

$\underset{4}{0}$

TABLE VI.- MATRIX ELEMENTS AND CONSTANT VECTOR FOR STANDOFF-DISTANCE CURVE FIT
(a) Matrix elements $\mathbf{c}_{\mathbf{j i}}$

j	1	2	3	4	5	6	7	8
1	*N	$\sum \ln \rho_{\infty}$	$\sum\left(\mathrm{V}_{\infty} \ln \rho_{\infty}\right)$	$\sum \ln \mathrm{R}_{\mathrm{B}}$	$\sum\left(\mathrm{V}_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum \ln \mathrm{V}_{\infty}$	$\sum\left(V_{\infty} \ln V_{\infty}\right)$	$\sum\left(\mathrm{v}_{\infty}{ }^{2} \ln \mathrm{~V}_{\infty}\right)$
2		$\sum\left(\ln \rho_{\infty}\right)^{2}$	$\sum\left[\mathrm{v}_{\infty}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{V}_{\infty} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$	$\sum\left(\mathrm{V}_{\infty} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$	$\sum\left(\mathrm{V}_{\infty}{ }^{2} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$
3			$\sum\left[\mathrm{v}_{\infty}{ }^{2}\left(\ln \rho_{\infty}\right)^{2}\right]$	$\sum\left(\mathrm{V}_{\infty} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{V}_{\infty}{ }^{2} \ln \rho_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{V}_{\infty} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$	$\sum\left(v_{\infty}^{2} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$	$\sum\left(\mathrm{v}_{\infty}^{3} \ln \rho_{\infty} \ln \mathrm{V}_{\infty}\right)$
4				$\sum\left(\mathrm{ln} \mathrm{R}_{\mathrm{B}}\right)^{2}$	$\sum\left[\mathrm{V}_{\infty}\left(\ln \mathrm{R}_{\mathrm{B}}\right)^{2}\right]$	$\sum\left(\ln V_{\infty} \ln \mathrm{R}_{B}\right)$	$\sum\left(V_{\infty} \ln V_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{V}_{\infty}{ }^{2} \ln \mathrm{~V}_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$
5			s_{ν}		$\sum\left[\mathrm{V}_{\infty}{ }^{2}\left(\ln \mathrm{R}_{\mathrm{B}}\right)^{2}\right]$	$\sum\left(\mathrm{V}_{\infty} \ln \mathrm{V}_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(\mathrm{V}_{\infty}{ }^{2} \ln \mathrm{~V}_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$	$\sum\left(v_{\infty}{ }^{3} \ln V_{\infty} \ln \mathrm{R}_{\mathrm{B}}\right)$
6						$\sum\left(\ln \mathrm{V}_{\infty}\right)^{2}$	$\sum\left[\mathrm{v}_{\infty}\left(\ln \mathrm{V}_{\infty}\right)^{2}\right]$	$\sum\left[\mathrm{V}_{\infty}{ }^{2}\left(\ln \mathrm{~V}_{\infty}\right)^{2}\right]$
7							$\sum\left[v_{\infty}{ }^{2}\left(\ln v_{\infty}\right)^{2}\right]$	$\sum\left[\mathrm{V}_{\infty}{ }^{3}\left(\ln \mathrm{~V}_{\infty}\right)^{2}\right]$
8								$\sum\left[\mathrm{v}_{\infty}{ }^{4}\left(\ln \mathrm{v}_{\infty}\right)^{2}\right]$

*The symbol N represents the total number of data points, and all summations are from 1 to N : that is, $\sum_{n=1}^{N}$
(b) Constant vector $\mathrm{H}_{\mathbf{j}}$

$$
H_{j}=\left\{\begin{array}{l}
\sum \ln \delta_{D} \\
\sum\left(\ln \delta_{D} \ln \rho_{\infty}\right) \\
\sum\left(v_{\infty} \ln \delta_{D} \ln \rho_{\infty}\right) \\
\sum\left(\ln \delta_{D} \ln R_{B}\right) \\
\sum\left(v_{\infty} \ln \delta_{D} \ln R_{B}\right) \\
\sum\left(\ln \delta_{D} \ln V_{\infty}\right) \\
\sum\left(v_{\infty} \ln \delta_{D} \ln V_{\infty}\right) \\
\sum\left(v_{\infty}{ }^{2} \ln \delta_{D} \ln V_{\infty}\right)
\end{array}\right\}
$$

percent

TABLE VII.- COMPARISON OF BASIC DATA AND CURVE-FIT RESULTS

ρ_{∞},
$g / \mathrm{cm}^{\prime} 3$

- En
 $>^{8} \underset{\sim}{8}$

[^1]OCK STANDOFF DISTANCE - Con
(a) Spherical bodies - Continued
FOR SHOCK STANDOFF DISTANCE - Continued

TABLE VII.- COMPARISON OF BASIC DATA AND CURVE-FIT RESULTS
FOR SHOCK STANDOFF DISTANCE - Concluded
(b) Nonspherical bodies - Concluded

※

Figure 1.- Parameters of inviscid radiating flow-field solutions for stagnation region of a blunt body.

Figure 2.- Free-stream conditions and body sizes used in generating data to be curve fitted.

Figure 3.- Shape-factor correction for heating rate of elliptical bodies (free stream alined with semiminor axis).

Figure 4.- Shape-factor correction for stagnation-point shock standoff distance of elliptical bodies (free stream alined with semiminor axis).

Figure 5.- Comparison of cooling-factor correlation curves from reference 9 with results of present curve fit for three velocities within the range of the present curve fit.

Figure 6.- Comparison of cooling-factor correlation curves from reference 9 with results of present curve fit for a velocity $\left(\mathrm{V}_{\infty}=18.28 \mathrm{~km} / \mathrm{sec}\right)$ higher than those of the present curve fit.

Figure 7.- Comparison of cooling-factor correlation curves from reference 9 with results of present curve fit for

(a) Low velocity.

(b) High velocity.

Figure 8.- Comparison of shock standoff distances for basic data, curve-fit equation, and results of Callis (ref. 6).

Page Intentionally Left Blank

```
587001 C1 U 33 740621 S00120ES
PHILCO FORD CORP
aERONuTRONIC dIV
AEROSPACE & COMMUNICATIONS OPERATIONS
ATTN: technICAl INFO SERvICES
FORD & JAMBOREE ROADS
NEWPORT BEACH CA 92663
```

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information

 derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.
TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.
[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]:

 ## ${ }_{\mathrm{cm}}^{\mathrm{C}} \mathrm{C}$,

 ## δ_{D}, cm

 ## 凩

 Axis
 ratio

 000000000000000000000000000000

 Case

