199 research outputs found

    A study of a karate trial teaching class in a teacher training course − based on students’ formative assessment

    Get PDF
    [EN] The purpose of this study was to examine the effectiveness of a karate trial teaching class in an initial teacher training course, through students’ formative assessment. It involved two case studies of trial teaching classes of karate and that of two other activities, taught by the students of an initial teacher training course. The results were assessed using the Students’ Formative Assessment of Physical Education (P.E.) Classes scale. Results showed significant differences between groups in “New discovery” (p<.05) and a trend toward statistical significance in “Skill growth”, “Fun Exercise” and “Learning friendly” (p<.10) based on the classes provided by karate and other teaching materials. This implies that karate might have different acute effects on students’ learning process in the context of school-level physical education

    Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1

    Get PDF
    In this study, insulin receptor substrate (IRS) p53 is identified as a binding partner for Kank, a kidney ankyrin repeat–containing protein that functions to suppress cell proliferation and regulate the actin cytoskeleton. Kank specifically inhibits the binding of IRSp53 with active Rac1 (Rac1G12V) but not Cdc42 (cdc42G12V) and thus inhibits the IRSp53-dependent development of lamellipodia without affecting the formation of filopodia. Knockdown (KD) of Kank by RNA interference results in increased lamellipodial development, whereas KD of both Kank and IRSp53 has little effect. Moreover, insulin-induced membrane ruffling is inhibited by overexpression of Kank. Kank also suppresses integrin-dependent cell spreading and IRSp53-induced neurite outgrowth. Our results demonstrate that Kank negatively regulates the formation of lamellipodia by inhibiting the interaction between Rac1 and IRSp53

    中学校武道領域における空手道授業に関する研究 ―教員養成課程の模擬授業の検討を通して―

    Get PDF
    The purpose of this study was to examine the effectiveness of a Karate trial teaching class in an initialteacher training course, through the student's formative assessment. It involved two case studies of trial teaching classes of Karate and that of two other activities, taught by the students of an initial teacher training course. The results were assessed using the Student's Formative Assessment of Physical Education Classes scale developed by Takahashi et.al(1994). Results of the study indicate that the students' formative assessment shows were significantly different (“new discovery”: p<.05) and show a trend toward statistical significance (‘Skill growth': p<.10, ‘Fun Exercise': p<.10, ‘Learning friendly': p<.10) based on the classes provided by Karate and other teaching materials. This implies that Karate might have different effects on the learning of students compared to other activities as teaching materials in school-level physical education

    Murine Missing in Metastasis (MIM) Mediates Cell Polarity and Regulates the Motility Response to Growth Factors

    Get PDF
    Missing in metastasis (MIM) is a member of the inverse BAR-domain protein family, and in vitro studies have implied MIM plays a role in deforming membrane curvature into filopodia-like protrusions and cell dynamics. Yet, the physiological role of the endogenous MIM in mammalian cells remains undefined.We have examined mouse embryonic fibroblasts (MEFs) derived from mice in which the MIM locus was targeted by a gene trapping vector. MIM(-/-) MEFs showed a less polarized architecture characterized by smooth edges and fewer cell protrusions as compared to wild type cells, although the formation of filopodia-like microprotrusions appeared to be normal. Immunofluorescent staining further revealed that MIM(-/-) cells were partially impaired in the assembly of stress fibers and focal adhesions but were enriched with transverse actin filaments at the periphery. Poor assembly of stress fibers was apparently correlated with attenuation of the activity of Rho GTPases and partially relieved upon overexpressing of Myc-RhoA(Q63L), a constitutively activated RhoA mutant. MIM(-/-) cells were also spread less effectively than wild type cells during attachment to dishes and substratum. Upon treatment with PDGF MIM(-/-) cells developed more prominent dorsal ruffles along with increased Rac1 activity. Compared to wild type cells, MIM(-/-) cells had a slower motility in the presence of a low percentage of serum-containing medium but migrated normally upon adding growth factors such as 10% serum, PDGF or EGF. MIM(-/-) cells were also partially impaired in the internalization of transferrin, fluorescent dyes, foreign DNAs and PDGF receptor alpha. On the other hand, the level of tyrosine phosphorylation of PDGF receptors was more elevated in MIM depleted cells than wild type cells upon PDGF treatment.Our data suggests that endogenous MIM protein regulates globally the cell architecture and endocytosis that ultimately influence a variety of cellular behaviors, including cell polarity, motility, receptor signaling and membrane ruffling

    Regulation of N-WASP and the Arp2/3 Complex by Abp1 Controls Neuronal Morphology

    Get PDF
    Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation
    corecore