867 research outputs found
Construction and Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System
In order to reduce backgrounds from radon-daughter plate-out onto detector
surfaces, an ultra-low-radon cleanroom is being commissioned at the South
Dakota School of Mines and Technology. An improved vacuum-swing-adsorption
radon mitigation system and cleanroom build upon a previous design implemented
at Syracuse University that achieved radon levels of
0.2Bqm. This improved system will employ a better pump and
larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit
and aged water for humidification. With the rebuilt (original) radon mitigation
system, the new low-radon cleanroom has already achieved a 300
reduction from an input activity of Bqm to a
cleanroom activity of Bqm.Comment: 5 pages, 4 figures, Proceedings of Low Radioactivity Techniques (LRT)
2015, Seattle, WA, March 18-20, 201
Studies of domain dynamics in amorphous Dy/Fe multilayers
Compositionally-modulated Dy/Fe films were prepared by dc magnetron sputtering onto glass substrates. For this series of samples, the Dy thickness was fixed at 5 Å, while the Fe thickness was varied from 4 to 6 Å. To study the magnetization reversal, the samples were first saturated. The magnetic field was then reversed to a value near the coercive field, and the Kerr rotation was measured as a function of time after reversal. We interpret our results in terms of the model of domain reversal first described by Fatuzzo for ferroelectrics. For some Fe thicknesses, we found that the reversal process was dominated by domain nucleation, while for other thicknesses it was dominated by domain wall motion. The observed behavior is discussed in terms of the magnetic and structural properties of the films
Strategies to improve the signal and noise performance of active matrix, flatâ panel imagers for diagnostic xâ ray applications
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134928/1/mp8831.pd
Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids
We have performed an approximate ab initio calculation of vibrational
properties of hydrogenated amorphous silicon (a-Si:H) using a molecular
dynamics method. A 216 atom model for pure amorphous silicon (a-Si) has been
employed as a starting point for our a-Si:H models with voids that were made by
removing a cluster of silicon atoms out of the bulk and terminating the
resulting dangling bonds with hydrogens.
Our calculation shows that the presence of voids leads to localized low
energy (30-50 cm^{-1}) states in the vibrational spectrum of the system. The
nature and localization properties of these states are analyzed by various
visualization techniques.Comment: 15 pages with 6 PS figures, to appear in PRB in December 199
Processingâ Dependent Microstructure of AgClâ CsAgCl2 Eutectic Photonic Crystals
Directional solidification of a eutectic melt allows control over the resultant eutectic microstructure, which in turn impacts both the mechanical and optical properties of the material. These selfâ organized phaseâ separated eutectic materials can be tuned to have periodicities from tens of micrometers down to nanometers. Furthermore, the two phases possess differences in their refractive index leading to interesting optical properties that can be tailored within the visible to infrared wavelength regime. It is found the binary salt eutectic AgClâ CsAgCl2 system forms a rod microstructure with sample draw rates up to 0.2 mm sâ 1 which transitions to a lamellar microstructure at draw rates greater than 0.36 mm sâ 1. Heatâ transfer simulations reveal a draw rateâ dependent direction of motion of the solidification front, which for a range of draw rates requires nucleation of the minority solid phase at the sample wall. Phaseâ field modeling indicates that the initial eutectic structure at the sample boundary, either rod or lamellar, dictates the bulk eutectic morphology. These samples contain submicrometer periodicities which coupled with their optical transparency results in them exhibiting draw rateâ dependent nearâ IR reflectance peaks consistent with stop bands for 2D hexagonal (rod) and 1D planar (lamellar) photonic crystals.The eutectic composition of the molten salts AgCl and CsCl exhibits a microstructural transition from rod to lamellar upon varying the draw rates controlled by directional solidification. This transition is dominated by the initial formation at the surface of either the rod or lamellar structure. The resultant eutectic microstructures have optical properties consistent with their being 2D and 1D photonic crystals.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/1/adom201701316.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/2/adom201701316_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/3/adom201701316-sup-0001-S1.pd
Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid
The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC
Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits
In electronics, information has been traditionally stored, processed and
communicated using an electron's charge. This paradigm is increasingly turning
out to be energy-inefficient, because movement of charge within an
information-processing device invariably causes current flow and an associated
dissipation. Replacing charge with the "spin" of an electron to encode
information may eliminate much of this dissipation and lead to more
energy-efficient "green electronics". This realization has spurred significant
research in spintronic devices and circuits where spin either directly acts as
the physical variable for hosting information or augments the role of charge.
In this review article, we discuss and elucidate some of these ideas, and
highlight their strengths and weaknesses. Many of them can potentially reduce
energy dissipation significantly, but unfortunately are error-prone and
unreliable. Moreover, there are serious obstacles to their technological
implementation that may be difficult to overcome in the near term.
This review addresses three constructs: (1) single devices or binary switches
that can be constituents of Boolean logic gates for digital information
processing, (2) complete gates that are capable of performing specific Boolean
logic operations, and (3) combinational circuits or architectures (equivalent
to many gates working in unison) that are capable of performing universal
computation.Comment: Topical Revie
The fundamental pro-groupoid of an affine 2-scheme
A natural question in the theory of Tannakian categories is: What if you
don't remember \Forget? Working over an arbitrary commutative ring , we
prove that an answer to this question is given by the functor represented by
the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable
absolute Galois group of when it is a field. This gives a new definition
for \'etale \pi_1(\spec(R)) in terms of the category of -modules rather
than the category of \'etale covers. More generally, we introduce a new notion
of "commutative 2-ring" that includes both Grothendieck topoi and symmetric
monoidal categories of modules, and define a notion of for the
corresponding "affine 2-schemes." These results help to simplify and clarify
some of the peculiarities of the \'etale fundamental group. For example,
\'etale fundamental groups are not "true" groups but only profinite groups, and
one cannot hope to recover more: the "Tannakian" functor represented by the
\'etale fundamental group of a scheme preserves finite products but not all
products.Comment: 46 pages + bibliography. Diagrams drawn in Tik
High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe
- …