51 research outputs found
Trends and Variability in Localized Precipitation Around Kibale National Park, Uganda, Africa
Our objective was to understand and describe local spatial and temporal variability in precipitation around Kibale National Park, a tropical forest area of high conservation value. Continental or regional-scale trends are often relied upon to make policy and management decisions, but these analyses are often at too coarse a resolution to capture important variability at a finer scale where management actions operate. Monthly rainfall data derived from ten long-term station records (1941-1975) were used to evaluate local spatiotemporal variability in seasonal and annual rainfall for the area surrounding Kibale National Park. The magnitude, direction and significance of trends in seasonal and annual rainfall within the area surrounding the park were identified using the Mann-Kendall trend test and Sen’s slope estimator. The standardized precipitation index was calculated at 3- and 12-month periods to identify areas of relative wetness or dryness. Analysis of annual trends and precipitation indices indicated that patterns in annual time series do not reflect the direction and magnitude of seasonal trends nor the spatial variability in intra-annual rainfall at the local scale. Significant negative trends in the seasonal long rains, following dry season and short rains were identified at stations west of Kibale, while significant positive trends in the seasonal short rains occurred at stations north of the park. Stations along the western park boundary tended to have more years in which the two dry seasons were abnormally dry than those stations located further from the park
Regulation of p27kip1 and p57kip2 functions by natural polyphenols
In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth
A Beckwith–Wiedemann-associated CDKN1C mutation allows the identification of a novel nuclear localization signal in human p57Kip2
p57Kip2 protein is a member of the CIP/Kip family, mainly localized in the nucleus where it exerts its Cyclin/CDKs inhibitory function. In addition, the protein plays key roles in embryogenesis, differentiation, and carcinogenesis depending on its cellular localization and interactors. Mutations of CDKN1C, the gene encoding human p57Kip2, result in the development of different genetic diseases, including Beckwith–Wiedemann, IMAGe and Silver–Russell syndromes. We investigated a specific Beckwith–Wiedemann associated CDKN1C change (c.946 C>T) that results in the substitution of the C-terminal amino acid (arginine 316) with a tryptophan (R316W-p57Kip2). We found a clear redistribution of R316W-p57Kip2, in that while the wild-type p57Kip2 mostly occurs in the nucleus, the mutant form is also distributed in the cytoplasm. Transfection of two expression constructs encoding the p57Kip2 N-and C-terminal domain, respectively, allows the mapping of the nuclear localization signal(s) (NLSs) between residues 220–316. Moreover, by removing the basic RKRLR sequence at the protein C-terminus (from 312 to 316 residue), p57Kip2 was confined in the cytosol, implying that this sequence is absolutely required for nuclear entry. In conclusion, we identified an unreported p57Kip2 NLS and suggest that its absence or mutation might be of relevance in CDKN1C-associated human diseases determining significant changes of p57Kip2 localization/regulatory roles
Evaluation of a New Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Anisakis spp.
Objective of the present study was to test the performances of a real-time LAMP-based field- friendly tool system for the detection of Anisakis spp., with particular focus on fish products. The specificity of the method was evaluated on Anisakis spp. larvae from internal collection. 100% of the Anisakis spp. strains tested were recognized, while, correctly, no amplification occurred for non-pathogenic Hysterothylacium spp. The sensitivity was evaluated in three independent trails conducted on intentionally infested at several intensities salmon fish fillets homogenate, on seabream commercial baby food and on domestic seabream baby food. Results obtained showed a detected minimum intensity of 20 larvae/kg in the first trial (infected salmon fillets homogenate), while in intentionally infected commercial and homemade seabream baby foods this minimum intensity was 4 larvae/kg, in agreement with the limit suggested by the Codex Alimentarius for instruments intended for the identification of the presence of larvae in fishery products (5 larvae/kg). The system did not give the same performances in the equivalent matrixes after thermal treatment inactivation. This LAMP method can be considered a very useful tool for the application to fish raw matrixes as it is a cost-effective and easy-functioning method, while in the detection of inactivated larvae for the prevention of possible allergic reactions, other studies should be performed
An update of the evolving epidemic of blaKPC carrying Klebsiella pneumoniae in Sicily, Italy, 2014: Emergence of multiple Non-ST258 Clones
Background: In Italy, Klebsiella pneumoniae carbapenemase producing K. pneumoniae (KPC-Kp) strains are highly endemic and KPC producing CC258 is reported as the widely predominating clone. In Palermo, Italy, previous reports have confirmed this pattern. However, recent preliminary findings suggest that an epidemiological change is likely ongoing towards a polyclonal KPC-Kp spread. Here we present the results of molecular typing of 94 carbapenem non susceptible K. pneumoniae isolates detected during 2014 in the three different hospitals in Palermo, Italy. Methods and Results: Ninety-four consecutive, non replicate carbapenem non susceptible isolates were identified in the three largest acute general hospitals in Palermo, Italy, in the six-month period March-August 2014. They were characterized by PCR for β-lactam, aminoglycoside and plasmid mediated fluoroquinolone resistance genetic determinants. The mgrB gene of the colistin resistant isolates was amplified and sequenced. Clonality was assessed by pulsed field gel electrophoresis and multilocus sequence typing. Eight non-CC258 sequence types (STs) were identified accounting for 60% of isolates. In particular, ST307 and ST273 accounted for 29% and 18% of isolates. CC258 isolates were more frequently susceptible to gentamicin and non-CC258 isolates to amikacin. Colistin non susceptibility was found in 42% of isolates. Modifications of mgrB were found in 32 isolates. Conclusions: Concurrent clonal expansion of some STs and lateral transmission of genetic resistance determinants are likely producing a thorough change of the KPC-Kp epidemiology in Palermo, Italy. In our setting mgrB inactivation proved to substantially contribute to colistin resistance. Our findings suggest the need to continuously monitor the KPC-Kp epidemiology and to assess by a nationwide survey the possible shifting towards a polyclonal epidemic
Effects of Germline VHL Deficiency on Growth, Metabolism, and Mitochondria.
Mutations in VHL, which encodes von Hippel-Lindau tumor suppressor (VHL), are associated with divergent diseases. We describe a patient with marked erythrocytosis and prominent mitochondrial alterations associated with a severe germline VHL deficiency due to homozygosity for a novel synonymous mutation (c.222C→A, p.V74V). The condition is characterized by early systemic onset and differs from Chuvash polycythemia (c.598C→T) in that it is associated with a strongly reduced growth rate, persistent hypoglycemia, and limited exercise capacity. We report changes in gene expression that reprogram carbohydrate and lipid metabolism, impair muscle mitochondrial respiratory function, and uncouple oxygen consumption from ATP production. Moreover, we identified unusual intermitochondrial connecting ducts. Our findings add unexpected information on the importance of the VHL-hypoxia-inducible factor (HIF) axis to human phenotypes. (Funded by Associazione Italiana Ricerca sul Cancro and others.)
Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot
Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management
Investigation of the micro-milling process of steel with THz bursts of ultrashort laser pulses
Burst mode (BM) processing with femtosecond laser pulses is emerging as a versatile tool for manufacturing micro-components on different materials, thanks to its ability to reduce the thermal load, which ensures highly precise and accurate miniaturization. However, a systematic investigation of the influence of the experimental parameters introduced by such irradiation mode, i.e., the number of pulses within the burst, their polarization and the intra-burst frequency, on the ablation process has not been reported, yet. In this work, we exploited a statistical approach based on the Design of Experiment (DoE) to study the micro-milling process of steel with bursts. Two prediction models were defined, describing the relationship between the working parameters, i.e., average power, number of overscans, laser repetition rate, scan speed and number of pulses within the bursts, and the response variables, i.e., ablated depth and surface roughness, revealing burst mode as a very promising solution to improve the surface finishing of ultrashort laser pulses micromilled components
Putting the capital ‘A’ in CoCoRAHS: an experimental programme to measure albedo using the Community Collaborative Rain, Hail & Snow (CoCoRaHS) Network
The Community Collaborative Rain, Hail & Snow (CoCoRaHS) Network is a community‐based network of weather observers and the largest provider of daily precipitation observations in the USA. In this study, we embrace the CoCoRaHS mission to use low‐cost measurement tools, provide training and education, and utilize an interactive website to create the first volunteer snow albedo network to collect high‐quality albedo data for research and education applications. We trained a sub‐set of 18 CoCoRaHS observers in the state of New Hampshire to collect albedo, snow depth, and snow density between 23 November 2011 and 15 March 2012. At less than $700 per observer, CoCoRAHS data measured using an Apogee MP‐200 pyranometer fall within ±0.05 of albedo values collected from a Kipp and Zonen CMA6 at local solar noon. CoCoRAHS values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow‐free albedo ranges from 0.09 to 0.39, depending on the underlying ground cover. In the 2011/2012 dataset, albedo increases logarithmically with snow depth and decreases linearly with snow density. The latter relationship is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an Analytical Spectral Devices FieldSpec 4 spectrometer. Copyright © 2013 John Wiley & Sons, Ltd
- …