1,683 research outputs found

    System, Device, and Method for Determination of Intraocular Pressure

    Get PDF
    A system for determination of intraocular pressure includes: an intraocular pressure sensor; a light source illuminating the sensor with one or more wavelengths of light; and a detector that measures emitted light from the sensor. The sensor includes a substrate member, a spacer member, and a flexible membrane, which define a sealed cavity. The flexible membrane moves in response to intraocular pressure changes. A device for measuring intraocular pressure includes: the sensor; an anchoring member attached to the sensor for immobilizing the sensor in an eye; and a protective member attached to the anchoring member and covering the sensor to prevent contact between the flexible membrane and the eye. A method for determination of intraocular pressure includes: placing the sensor in an eye; illuminating, with a light source, the sensor with one or more wavelengths of light; and detecting, with a detector, a resultant light that contains information about intraocular pressure

    South Dakota Fisheries: An Evaluation of a Chemical Immersion Marking Technique for Juvenile Yellow Perch and Application to a Stocking Assessment of Marsh-Reared Yellow Perch into Eastern South Dakota Lakes

    Get PDF
    Currently, yellow perch Perca flavescens stocking needs in South Dakota are met by intensive trap and transfer of juvenile and adult perch. The success of these stocking efforts is largely undocumented, primarily due to problems in distinguishing yellow perch produced within the recipient water body and stocked perch. We first developed a transfer-tank marking protocol to determine immersion duration and optimal concentration of oxytetracycline (OTC) hydrochloride needed to produce an effective mark. Then we validated the protocol for adult yellow perch and determined the persistence of OTC in edible muscle tissue. Marking results indicated that satisfactory OTC marks may be obtained in juvenile yellow perch using 600- to 700-ppm OTC for an immersion period of 6 to 8 h. OTC marks were evident in juvenile yellow perch otoliths and dorsal spines checked at 3 months post-immersion. Mark quality was observed to be slightly better in juvenile dorsal spines than otoliths. OTC marks in adult yellow perch were detectable at otolith margins at 9 d post-immersion. Adult muscle tissues were analyzed with high pressure liquid chromatography to quantify OTC residues. A nonlinear model (In epi-OTC [~g g-I] = 0.960 - 0.389*In time [h]; r\u27- = 0.99) describing the combined OTC base/epi residue relation to time indicated that no more than 0.5 ~g OTC g-I should be present at 73 h following immersion

    Relationship between red blood cell lifespan and endogenous carbon monoxide in the common bottlenose dolphin and beluga

    Get PDF
    Certain deep-diving marine mammals (i.e., northern elephant seal (Mirounga angustirosis), Weddell seal (Leptonychotes weddellii)) have blood carbon monoxide (CO) levels that are comparable to those of chronic cigarette smokers. Most CO produced in humans is a by-product of heme degradation, which is released when red blood cells (RBC) are destroyed. Elevated CO can occur in humans when RBC lifespan decreases. The contribution of RBC turnover to CO concentrations in marine mammals is unknown. Here, we report the first RBC lifespans in two healthy, marine mammal species with different diving capacities and heme stores, the shallow diving bottlenose dolphin (Tursiops truncatus) and deep-diving beluga (Delphinapterus leucas) and relate the lifespans to the levels of CO in blood and breath. The belugas, with high blood heme stores, had the longest mean RBC lifespan compared to humans and bottlenose dolphins. Both cetacean species were found to have three times higher blood CO content compared to humans. The estimated CO production rate from heme degradation indicates some marine mammals may have additional mechanisms for CO production, or delay CO removal from the body, potentially from long duration breath-holds

    Early anterior cingulate involvement is seen in presymptomatic MAPT P301L mutation carriers

    Get PDF
    BACKGROUND: PET imaging of glucose metabolism has revealed presymptomatic abnormalities in genetic FTD but has not been explored in MAPT P301L mutation carriers. This study aimed to explore the patterns of presymptomatic hypometabolism and atrophy in MAPT P301L mutation carriers. METHODS: Eighteen asymptomatic members from five families with a P301L MAPT mutation were recruited to the study, six mutation carriers, and twelve mutation-negative controls. All participants underwent standard behavioural and cognitive assessment as well as [18F]FDG-PET and 3D T1-weighted MRI brain scans. Regional standardised uptake value ratios (SUVR) for the PET scan and volumes calculated from an automated segmentation for the MRI were obtained and compared between the mutation carrier and control groups. RESULTS: The mean (standard deviation) estimated years from symptom onset was 12.5 (3.6) in the mutation carrier group with a range of 7 to 18 years. No differences in cognition were seen between the groups, and all mutation carriers had a global CDR plus NACC FTLD of 0. Significant reduction in [18F] FDG uptake in the anterior cingulate was seen in mutation carriers (mean 1.25 [standard deviation 0.07]) compared to controls (1.36 [0.09]). A similar significant reduction was also seen in grey matter volume in the anterior cingulate in mutation carriers (0.60% [0.06%]) compared to controls (0.68% [0.08%]). No other group differences were seen in other regions. CONCLUSIONS: Anterior cingulate hypometabolism and atrophy are both apparent presymptomatically in a cohort of P301L MAPT mutation carriers. Such a specific marker may prove to be helpful in stratification of presymptomatic mutation carriers in future trials

    The effect of exercise induced hyperthermia on muscle fibre conduction velocity during sustained isometric contraction

    Get PDF
    This study investigated the effect of dynamic exercise in a hot environment on muscle fibre conduction velocity (MFCV) of the knee extensors during a sustained isometric contraction. Seven trained male cyclists (mean [±SD], age, and V_ O2max were 35 ± 9.9 and 57.4 ± 6.6 ml kg1 min1) cycled for 50 min at 60% of peak power output in either: (1) 40 C (HOT); or (2) 19 C (NEUTRO); and (3) remained passive in 40 C (PASS). Post-intervention a 100 s maximal sustained isometric contraction (SMC) of the knee extensors was performed. Rectal temperature increased (p < 0.01) for both HOT and NEUTRO with PASS unchanged and with HOT rising higher (p < 0.01) than NEUTRO (38.6 ± 0.4 vs. 37.6 ± 0.4 C). Muscle temperature increased (p < 0.01) for all three conditions with HOT rising the highest (p < 0.01) (40.3 ± 0.5 vs. 38.3 ± 0.3 and 37.6 ± 1.3 C for NEUTRO and PASS, respectively). Lactate showed higher accumulation (p < 0.01) for HOT than NEUTRO (6.9 ± 2.3 vs. 4.2 ± 2.1 mmol l1). During SMC the torque, electromyography root mean squared (RMS) and MFCV all significantly (p < 0.01) declined. Only in HOT did MFCV decline significantly (p < 0.01) less than torque and RMS (9.9 ± 6.2% vs. 37.5 ± 17.8% and 37.6 ± 21.4%, respectively). In conclusion, during exercise induced hyperthermia, reduced motor unit recruitment as opposed to slower conducting properties of the muscle fibre appears to be responsible for the greater reduction in torque output

    TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

    Get PDF
    Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias

    Direction-dependent excitatory and inhibitory ocular vestibular-evoked myogenic potentials (oVEMPs) produced by oppositely directed accelerations along the midsagittal axis of the head

    Get PDF
    Oppositely directed displacements of the head need oppositely directed vestibulo-ocular reflexes (VOR), i.e. compensatory responses. Ocular vestibular-evoked myogenic potentials (oVEMPs) mainly reflect the synchronous extraocular muscle activity involved in the process of generating the VOR. The oVEMPs recorded beneath the eyes when looking up represent electro-myographic responses mainly of the inferior oblique muscle. We aimed: (1) to study the properties of these responses as they were produced by head acceleration impulses to the forehead and to the back of the head; (2) to investigate the relationships between these responses and the 3-D linear head accelerations that might reflect the true stimulus that acts on the vestibular hair cells. We produced backward- and forward-directed acceleration stimuli in four conditions (positive and negative head acceleration impulses to the hairline and to the inion) in 16 normal subjects. The oVEMPs produced by backward- and forward-directed accelerations of the head showed consistent differences. They were opposite in the phase. The responses produced by backward accelerations of the head began with an initial negativity, n11; conversely, those produced by accelerations directed forward showed initially a positive response, p11. There was a high inter-subject correlation of head accelerations along the head anteroposterior and transverse axes, but almost no correlation of accelerations along the vertical axis of the head. We concluded that backward-directed head accelerations produced an initial excitatory response, and forward-directed accelerations of the head were accompanied by an initial inhibitory response. These responses showed dependence on acceleration direction in the horizontal plane of the head. This could be consistent with activation of the utricle
    • …
    corecore