148 research outputs found

    Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries

    Get PDF
    We report a wire-shaped three-dimensional (3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites, easy access of electrolyte ions, and facile charge transport for flexible wearable applications. The interconnected and compact electrode delivers a high volumetric capacitance (gravimetric capacitance) of 73 F cm???3 (2446 F g???1), excellent rate capability, and cycle stability. The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire (NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire (Mn3O4/3D-Ni) hybrid supercapacitor exhibits energy density of 153.3 Wh kg???1 and power density of 8810 W kg???1. The red light-emitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions. The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge???discharge times, for smart wearable and implantable devices

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Accuracy versus precision in boosted top tagging with the ATLAS detector

    Get PDF
    Abstract The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √ s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available.</jats:p

    Advances and prospects of fiber supercapacitors

    No full text
    202211 bcwwAccepted ManuscriptRGCPublishe

    Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica

    Full text link
    Humpback whales, Megaptera novaeangliae, breeding off la Reunion Island (Indian Ocean) undergo large-scale seasonal migrations between summer feeding grounds near Antarctica and their reproductive winter grounds in the Indian Ocean. The main scope of the current study was to investigate chemical exposure of humpback whales breeding in the Indian Ocean by providing the first published data on this breeding stock concerning persistent organic pollutants (POPs), namely polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), DDT and its metabolites (DDTs), chlordane compounds (CHLs), polybrominated diphenyl ethers (PBDEs), and methoxylated PBDEs (MeO-PBDEs). Analyses of stable isotopes δ13C and δ15N in skin resulted in further insight in their feeding ecology, which was in agreement with a diet focused mainly on low trophic level prey species, such as krill from Antarctica. POPs were measured in all humpback whales in the order of HCB > DDTs > CHLs > HCHs > PCBs > PBDEs > MeO-BDEs. HCB (median: 24 ng.g-1 lw) and DDTs (median: 7.7 ng.g-1 lw) were the predominant compounds in all whale biopsies. Among DDT compounds, p,p’-DDE was the major organohalogenated pollutant, reflecting its long-term accumulation in humpback whales. Significantly lower concentrations of HCB and DDTs were found in females than in males (p0.05). Differences in the HCB and DDTs suggested gender-specific transfer of some compounds to the offspring. POP concentrations were lower than previously reported results for humpback whales sampled near the Antarctic Peninsula, suggesting potential influence of their nutritional status and may indicate different exposures of the whales according to their feeding zones. Further investigations are required to assess exposure of southern humpback whales throughout their feeding zones

    Structural and ionic conductivity of Cu-doped titania (Ti0.95Cu0.05O2−δ) for high temperature energy devices.

    No full text
    The Cu-doped titania (Ti0.95Cu0.05O2-δ) is studied here as a solid-state ionic conductor for its possible application in high temperature energy devices such as an electrolyte for SOFC. The sample in the powder form was obtained by solid state method using TiO2 and copper acetate by heating up to 1200 °C for 10 h. It was characterized by XRD, FT-IR, Raman, SEM/EDS, DRS-UV-Visible, photoluminescence, BET and ac-impedance techniques. The oxide ion conductivity (σt) values obtained from ac-impedance measurements showed a linear increase with temperature from 300 − 700 °C. The σt values are similar to that of Ln-doped ceria, and the highest conductivity of 1.41 × 10−4 Scm−1 was recorded at 700°C. The activation energy for total conductivity was found to be 0.82 eV. The ionic and electronic transport numbers are 0.79 and 0.21, respectively. This study suggests the plausible use of rutile TiO2 based (low-cost and structurally stable) materials as electrolytes in SOFC

    Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon

    No full text
    202211 bcwwAccepted ManuscriptRGCOthersThe Hong Kong Polytechnic UniversityPublishe
    corecore