1,523 research outputs found

    Non-equilibrium Condensation Process in a Holographic Superconductor

    Full text link
    We study the non-equilibrium condensation process in a holographic superconductor. When the temperature T is smaller than a critical temperature T_c, there are two black hole solutions, the Reissner-Nordstrom-AdS black hole and a black hole with a scalar hair. In the boundary theory, they can be regarded as the supercooled normal phase and the superconducting phase, respectively. We consider perturbations on supercooled Reissner-Nordstrom-AdS black holes and study their non-linear time evolution to know about physical phenomena associated with rapidly-cooled superconductors. We find that, for T<T_c, the initial perturbations grow exponentially and, eventually, spacetimes approach the hairy black holes. We also clarify how the relaxation process from a far-from-equilibrium state proceeds in the boundary theory by observing the time dependence of the superconducting order parameter. Finally, we study the time evolution of event and apparent horizons and discuss their correspondence with the entropy of the boundary theory. Our result gives a first step toward the holographic understanding of the non-equilibrium process in superconductors.Comment: 20 pages, 7 figure

    In-medium hadronic spectral functions through the soft-wall holographic model of QCD

    Full text link
    We study the scalar glueball and vector meson spectral functions in a hot and dense medium by means of the soft-wall holographic model of QCD. Finite temperature and density effects are implemented through the AdS/RN metric. We analyse the behaviour of the hadron masses and widths in the (T,μ)(T,\mu) plane, and compare our results with the experimental ones and with other theoretical determinations.Comment: 16 pages, 6 figures. matching the published versio

    Bosonic excitations of the AdS4 Reissner-Nordstrom black hole

    Full text link
    We study the long-lived modes of the charge density and energy density correlators in the strongly-coupled, finite density field theory dual to the AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators contain a pole due to sound propagation, as well as a pole due to a long-lived, purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion mode. As the temperature is raised in the range T\lesssim\mu, the sound attenuation shows no significant temperature dependence. When T\gtrsim\mu, it quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T. It does not share any of the temperature-dependent properties of the 'zero sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field theory. For such small momenta, the energy density spectral function is dominated by the sound mode at all temperatures, whereas the charge density spectral function undergoes a crossover from being dominated by the sound mode at low temperatures to being dominated by the diffusion mode when T \mu^2/q. This crossover occurs due to the changing residue at each pole. We also compute the momentum dependence of these spectral functions and their corresponding long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    Structural Changes of the Paraflagellar Rod during Flagellar Beating in Trypanosoma cruzi

    Get PDF
    , the agent of Chagas disease, is a protozoan member of the Kinetoplastidae family characterized for the presence of specific and unique structures that are involved in different cell activities. One of them is the paraflagellar rod (PFR), a complex array of filaments connected to the flagellar axoneme. Although the function played by the PFR is not well established, it has been shown that silencing of the synthesis of its major proteins by either knockout of RNAi impairs and/or modifies the flagellar motility.Here, we present results obtained by atomic force microscopy (AFM) and transmission electron microscopy (TEM) of replicas of quick-frozen, freeze-fractured, deep-etched and rotary-replicated cells to obtain detailed information of the PFR structures in regions of the flagellum in straight and in bent state. The images obtained show that the PFR is not a fixed and static structure. The pattern of organization of the PFR filament network differs between regions of the flagellum in a straight state and those in a bent state. Measurements of the distances between the PFR filaments and the filaments that connect the PFR to the axoneme as well as of the angles between the intercrossed filaments supported this idea.Graphic computation based on the information obtained allowed the proposal of an animated model for the PFR structure during flagellar beating and provided a new way of observing PFR filaments during flagellar beating

    Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracking an ingested magnet by the Magnet Tracking System MTS-1 (Motilis, Lausanne, Switzerland) is an easy and minimally-invasive method to assess gastrointestinal transit. The aim was to test the validity of MTS-1 for assessment of gastric transit time and small intestinal transit time, and to illustrate transit patterns detected by the system.</p> <p>Methods</p> <p>A small magnet was ingested and tracked by an external matrix of 16 magnetic field sensors (4 × 4) giving a position defined by 5 coordinates (position: <b>x, y, z, and angle: θ, ϕ)</b>. Eight healthy subjects were each investigated three times: (1) with a small magnet mounted on a capsule endoscope (PillCam); (2) with the magnet alone and the small intestine in the fasting state; and (3) with the magnet alone and the small intestine in the postprandial state.</p> <p>Results</p> <p>Experiment (1) showed good agreement and no systematic differences between MTS-1 and capsule endoscopy when assessing gastric transit (median difference 1 min; range: 0-6 min) and small intestinal transit time (median difference 0.5 min; range: 0-52 min). Comparing experiments (1) and (2) there were no systematic differences in gastric transit or small intestinal transit when using the magnet-PillCam unit and the much smaller magnetic pill. In experiments (2) and (3), short bursts of very fast movements lasting less than 5% of the time accounted for more than half the distance covered during the first two hours in the small intestine, irrespective of whether the small intestine was in the fasting or postprandial state. The mean contraction frequency in the small intestine was significantly lower in the fasting state than in the postprandial state (9.90 min<sup>-1 </sup>vs. 10.53 min<sup>-1</sup>) (p = 0.03).</p> <p>Conclusion</p> <p>MTS-1 is reliable for determination of gastric transit and small intestinal transit time. It is possible to distinguish between the mean contraction frequency of small intestine in the fasting state and in the postprandial state.</p

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
    corecore