141 research outputs found

    Kerjasama Guru Dan Orangtua Dalam Proses Pengembangan Kecerdasan Sosial Emosianal Anak Usia Dini Kelompok B Usia 5-6 Tahun Pada Masa Pandemi Covid-19 Di Taman Kanak-Kanak Al-Kautsar Batam

    Get PDF
    Penelitian ini bertujuan (1) Menganalisis kerjasama Guru dan Orangtua pada Masa Pandemi Covid-19 (2) Menganalisis Proses pengembangan kecerdasan sosial emosional anak usia dini pada masa pandemi Covid-19. (3) Menganalisis faktor pendukung dan penghambat kerjasama Guru dan Orangtua dalam Proses Pengembangan Kecerdasan Sosial Emosional Anak Usia Dini. Penelitian ini menggunakan pendekatan kualitatif deskriptif dengan menggunakan metode pengumpulan data observasi, wawancara dan dokumentasi. Tahap teknik analisis data meliputi reduksi data, penyajian data dan verifikasi data, sedangkan pengecekan keterpercayaan data dilakukan dengan perpanjangan keikutsertaan, ketelitian pengamatan, triangulasi dan melakukan konsultasi ke pembimbing. Hasil penelitian menunjukkan bahwa: (1) Kerjasama guru dan orangtua pada masa pandemi Covid-19 di Taman Kanak-kanak Al-Kautsar Batam meliputi adanya tindakan meliputi: Tanggung Jawab Pengawasan, Kesamaan Tujuan, Pengadaan peralatan pendidikan. (2) Proses pengembangan kecerdasan sosial emosional anak usia dini pada masa pandemi Covid-19 di Taman Kanak-kanak Al-Kautsar Batam meliputi: Aspek kesadaran diri, Manajemen diri, Kesadaran Sosial, Keterampilan hubungan, Pengambilan keputusan. (3) Faktor pendukung kerjasama Guru dan orangtua dalam Proses Pengembangan Kecerdasan Sosial Emosional Anak Usia Dini berupa lingkungan tempat tinggal sedangkan penghambat dalam pelaksanaan jaringan wifi yang kurang baik dan masih terdapat orangtua belum dapat menggunakan media zoom

    Deep Learning-Based Cell Outage Detection in Next Generation Networks

    Get PDF
    5G and beyond wireless networks will support high data rate, seem-less connectivity and a massive number of users as compared to 4G network. It is also expected that the end-to-end latency in transferring data will also reduce significantly, i.e., 5G will support ultra-low latency services. To provide the users with all these advantages, 5G utilizes the Ultra-Dense Networks (UDN) technique. UDN helps manage the explosive traffic data of users as multiple small cells are deployed in both indoor and outdoor areas, for seamless coverage. However, outage is difficult to detect in these small cells as these small cells have high density of users. To overcome this hindrance, Cell Outage Detection (COD) technique is utilized which aims to detect outage autonomously. This reduces maintenance cost and outages can be detected beforehand. In this paper, Long Short Term Memory (LSTM) is used for outage detection. The LSTM network is trained and tested on subscriber activities values which include SMS, Call and Internet activity. Our proposed LSTM model has classification accuracy of 85% and a FPR of 15.7303%

    When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it

    Get PDF
    Impact of variability in the measured parameter is rarely considered in designing clinical protocols for optimization of atrioventricular (AV) or interventricular (VV) delay of cardiac resynchronization therapy (CRT). In this article, we approach this question quantitatively using mathematical simulation in which the true optimum is known and examine practical implications using some real measurements. We calculated the performance of any optimization process that selects the pacing setting which maximizes an underlying signal, such as flow or pressure, in the presence of overlying random variability (noise). If signal and noise are of equal size, for a 5-choice optimization (60, 100, 140, 180, 220 ms), replicate AV delay optima are rarely identical but rather scattered with a standard deviation of 45 ms. This scatter was overwhelmingly determined (ρ = −0.975, P < 0.001) by Information Content, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}SignalSignal+Noise {\frac{\text{Signal}}{{{\text{Signal}} + {\text{Noise}}}}} \end{document}, an expression of signal-to-noise ratio. Averaging multiple replicates improves information content. In real clinical data, at resting, heart rate information content is often only 0.2–0.3; elevated pacing rates can raise information content above 0.5. Low information content (e.g. <0.5) causes gross overestimation of optimization-induced increment in VTI, high false-positive appearance of change in optimum between visits and very wide confidence intervals of individual patient optimum. AV and VV optimization by selecting the setting showing maximum cardiac function can only be accurate if information content is high. Simple steps to reduce noise such as averaging multiple replicates, or to increase signal such as increasing heart rate, can improve information content, and therefore viability, of any optimization process

    Attenuation of microvascular function in those with cardiovascular disease is similar in patients of Indian Asian and European descent

    Get PDF
    addresses: Institute of Biomedical and Clinical Science, Peninsula Medical School (Exeter), University of Exeter, UK. [email protected]: PMCID: PMC2823616types: Comparative Study; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't© 2010 Strain et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Indian Asians are at increased risk of cardiovascular death which does not appear to be explained by conventional risk factors. As microvascular disease is also more prevalent in Indian Asians, and as it is thought to play a role in the development of macrovascular disease, we decided to determine whether impaired microcirculation could contribute to this increased cardiovascular risk in Indian Asians

    British randomised controlled trial of AV and VV optimization ("BRAVO") study:rationale, design, and endpoints

    Get PDF
    Background Echocardiographic optimization of pacemaker settings is the current standard of care for patients treated with cardiac resynchronization therapy. However, the process requires considerable time of expert staff. The BRAVO study is a non-inferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular (VV) delay with an alternative method using non-invasive blood pressure monitoring that can be automated to consume less staff resources. Methods/Design BRAVO is a multi-centre, randomized, cross-over, non-inferiority trial of 400 patients with a previously implanted cardiac resynchronization device. Patients are randomly allocated to six months in each arm. In the echocardiographic arm, AV delay is optimized using the iterative method and VV delay by maximizing LVOT VTI. In the haemodynamic arm AV and VV delay are optimized using non-invasive blood pressure measured using finger photoplethysmography. At the end of each six month arm, patients undergo the primary outcome measure of objective exercise capacity, quantified as peak oxygen uptake (VO2) on a cardiopulmonary exercise test. Secondary outcome measures are echocardiographic measurement of left ventricular remodelling, quality of life score and N-terminal pro B-type Natriuretic Peptide (NT-pro BNP). The study is scheduled to complete recruitment in December 2013 and to complete follow up in December 2014. Discussion If exercise capacity is non-inferior with haemodynamic optimization compared with echocardiographic optimization, it would be proof of concept that haemodynamic optimization is an acceptable alternative which has the potential to be more easily implemented

    Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior

    Get PDF
    The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world’s population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through β-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA β-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism
    corecore