1,006 research outputs found
An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels
Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, GCKR, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of GCKR, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (P = 1.61 × 10−12; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (P = 3.01 × 10−14; β [SE] = 0.15 [0.02]). GCKR Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate–mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.postprin
Photocurrent measurements of supercollision cooling in graphene
The cooling of hot electrons in graphene is the critical process underlying
the operation of exciting new graphene-based optoelectronic and plasmonic
devices, but the nature of this cooling is controversial. We extract the hot
electron cooling rate near the Fermi level by using graphene as novel
photothermal thermometer that measures the electron temperature () as it
cools dynamically. We find the photocurrent generated from graphene
junctions is well described by the energy dissipation rate , where the heat capacity is and is the
base lattice temperature. These results are in disagreement with predictions of
electron-phonon emission in a disorder-free graphene system, but in excellent
quantitative agreement with recent predictions of a disorder-enhanced
supercollision (SC) cooling mechanism. We find that the SC model provides a
complete and unified picture of energy loss near the Fermi level over the wide
range of electronic (15 to 3000 K) and lattice (10 to 295 K) temperatures
investigated.Comment: 7pages, 5 figure
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
Reliability and validity of the telephone version of the Cantonese Mini-mental State Examination (T-CMMSE) when used with elderly patients with and without dementia in Hong Kong
Author name used in this publication: Kenneth Nai Kuen Fong2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Distributions of epistasis in microbes fit predictions from a fitness landscape model.
How do the fitness effects of several mutations combine? Despite its simplicity, this question is central to the understanding of multilocus evolution. Epistasis (the interaction between alleles at different loci), especially epistasis for fitness traits such as reproduction and survival, influences evolutionary predictions "almost whenever multilocus genetics matters". Yet very few models have sought to predict epistasis, and none has been empirically tested. Here we show that the distribution of epistasis can be predicted from the distribution of single mutation effects, based on a simple fitness landscape model. We show that this prediction closely matches the empirical measures of epistasis that have been obtained for Escherichia coli and the RNA virus vesicular stomatitis virus. Our results suggest that a simple fitness landscape model may be sufficient to quantitatively capture the complex nature of gene interactions. This model may offer a simple and widely applicable alternative to complex metabolic network models, in particular for making evolutionary predictions
Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese
published_or_final_versio
Can rhythmical auditory stimulation alter gait pattern in children with asperger syndrome?
2013-2014 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Epigenetic polypharmacology: from combination therapy to multitargeted drugs
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed
The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
- …
