212 research outputs found

    Multidrug efflux pumps in Staphylococcus aureus: an update.

    Get PDF
    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.publishersversionpublishe

    Epidemiology and clinical presentation of community-acquired Staphylococcus aureus bacteraemia in children under 5 years of age admitted to the Manhica District Hospital, Mozambique, 2001-2019

    Get PDF
    Staphylococcus aureus bacteraemia (SAB) is one of the most common bloodstream infections globally. Data on the burden and epidemiology of community-acquired SAB in low-income countries are scarce but needed to defne preventive and management strategies. Blood samples were collected from children<5 years of age with fever or severe disease admitted to the Manhiça District Hospital for bacterial isolation, including S. aureus. Between 2001 and 2019, 7.6% (3,197/41,891) of children had bacteraemia, of which 12.3% corresponded to SAB. The overall incidence of SAB was 56.1 episodes/100,000 children-years at risk (CYAR), being highest among neonates (589.8 episodes/100,000 CYAR). SAB declined signifcantly between 2001 and 2019 (322.1 to 12.5 episodes/100,000 CYAR). In-hospital mortality by SAB was 9.3% (31/332), and signifcantly associated with infections by multidrugresistant (MDR) strains (14.7%, 11/75 vs. 6.9%, 14/204 among non-MDR, p=0.043) and methicillin-resistant S. aureus (33.3%, 5/15 vs. 7.6%, 20/264 among methicillin-susceptible S. aureus, p=0.006). Despite the declining rates of SAB, this disease remains an important cause of death among children admitted to MDH, possibly in relation to the resistance to the frst line of empirical treatment in use in our setting, suggesting an urgent need to review current policy recommendationspublishersversionpublishe

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and high plasma homocysteine in chronic hepatitis C (CHC) infected patients from the Northeast of Brazil

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (<it>MTHFR</it>) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of <it>MTHFR </it>gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil.</p> <p>Method</p> <p>One hundred seven-four untreated patients with CHC were genotyped for the C677T <it>MTHFR</it>. Genomic DNA was extracted from peripheral blood cells and the C677T <it>MTHFR </it>polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week.</p> <p>Results</p> <p>Among subjects infected with CHC genotype non-1 the frequency of <it>MTHFR </it>genotypes TT was 9.8% <it>versus </it>4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the <it>MTHFR </it>genotype TT × CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03).</p> <p>Conclusion</p> <p>Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of <it>MTHFR </it>C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of <it>MTHFR </it>C677T polymorphism should be confirmed in a large population.</p
    corecore