1,017 research outputs found

    Melatonin in Alzheimer's disease and other neurodegenerative disorders

    Get PDF
    Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may have potential value in prevention and treatment of AD and other neurodegenerative disorders

    Perception and beliefs about mental illness among adults in Karfi village, northern Nigeria

    Get PDF
    BACKGROUND: This study was designed to examine the knowledge, attitude and beliefs about causes, manifestations and treatment of mental illness among adults in a rural community in northern Nigeria. METHODS: A cross sectional study design was used. A pre-tested, semi-structured questionnaire was administered to 250 adults residing in Karfi village, northern Nigeria. RESULTS: The most common symptoms proffered by respondents as manifestations of mental illness included aggression/destructiveness (22.0%), loquaciousness (21.2%), eccentric behavior (16.1%) and wandering (13.3%). Drug misuse including alcohol, cannabis, and other street drugs was identified in 34.3% of the responses as a major cause of mental illness, followed by divine wrath/ God's will (19%), and magic/spirit possession (18.0%). About 46% of respondents preferred orthodox medical care for the mentally sick while 34% were more inclined to spiritual healing. Almost half of the respondents harbored negative feelings towards the mentally ill. Literate respondents were seven times more likely to exhibit positive feelings towards the mentally ill as compared to non-literate subjects (OR = 7.6, 95% confidence interval = 3.8–15.1). CONCLUSIONS: Our study demonstrates the need for community educational programs in Nigeria aimed at demystifying mental illness. A better understanding of mental disorders among the public would allay fear and mistrust about mentally ill persons in the community as well as lessen stigmatization towards such persons

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    A spatio-temporal mining approach towards summarizing and analyzing protein folding trajectories

    Get PDF
    Understanding the protein folding mechanism remains a grand challenge in structural biology. In the past several years, computational theories in molecular dynamics have been employed to shed light on the folding process. Coupled with high computing power and large scale storage, researchers now can computationally simulate the protein folding process in atomistic details at femtosecond temporal resolution. Such simulation often produces a large number of folding trajectories, each consisting of a series of 3D conformations of the protein under study. As a result, effectively managing and analyzing such trajectories is becoming increasingly important. In this article, we present a spatio-temporal mining approach to analyze protein folding trajectories. It exploits the simplicity of contact maps, while also integrating 3D structural information in the analysis. It characterizes the dynamic folding process by first identifying spatio-temporal association patterns in contact maps, then studying how such patterns evolve along a folding trajectory. We demonstrate that such patterns can be leveraged to summarize folding trajectories, and to facilitate the detection and ordering of important folding events along a folding path. We also show that such patterns can be used to identify a consensus partial folding pathway across multiple folding trajectories. Furthermore, we argue that such patterns can capture both local and global structural topology in a 3D protein conformation, thereby facilitating effective structural comparison amongst conformations. We apply this approach to analyze the folding trajectories of two small synthetic proteins-BBA5 and GSGS (or Beta3S). We show that this approach is promising towards addressing the above issues, namely, folding trajectory summarization, folding events detection and ordering, and consensus partial folding pathway identification across trajectories

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Protective effects of solvent fractions of Mentha spicata (L.) leaves evaluated on 4-nitroquinoline-1-oxide induced chromosome damage and apoptosis in mouse bone marrow cells

    Get PDF
    Spearmint leaves (Mentha spicata L.) contain high levels of antioxidants that are known to protect against both exogenous and endogenous DNA damage. In this study, the protective effects of the hexane fraction (HF), chloroform fraction (CF) and ethyl acetate fraction (EAF) in an ethanol extract from M. spicata were evaluated against 4-nitroquinoline-1-oxide (4-NQO) induced chromosome damage and apoptosis in bone marrow cells of Swiss albino mice. Two (EAF; 80 and 160 mg/ kg body weight - bw) or three (HF and CF; 80, 160 and 320 mg/ kg bw) doses of solvent fractions or vehicle control (25% DMSO in water) were administered orally for five consecutive days. Upon the sixth day, 4-NQO was injected intraperitoneally. The animals were killed the following day. Other control groups were comprised of animals treated with either the vehicle control or the various doses of solvent fractions, but with no 4-NQO treatment. 4-NQO induced micro-nucleated polychromatic erythrocytes (MnPCEs) in all the test groups. However, pre-treatment of animals with the solvent fractions significantly reduced the 4-NQO-induced MnPCEs as well as the percentage of apoptotic cells. The reduction of both MnPCE and apoptosis was more evident following the pre-treatment of animals with 160 mg/kg bw EAF

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Nucleic acid extraction from formalin-fixed paraffin-embedded cancer cell line samples: a trade off between quantity and quality?

    Get PDF
    Background: Advanced genomic techniques such as Next-Generation-Sequencing (NGS) and gene expression profiling, including NanoString, are vital for the development of personalised medicines, as they enable molecular disease classification. This has become increasingly important in the treatment of cancer, aiding patient selection. However, it requires efficient nucleic acid extraction often from formalin-fixed paraffin-embedded tissue (FFPE). Methods: Here we provide a comparison of several commercially available manual and automated methods for DNA and/or RNA extraction from FFPE cancer cell line samples from Qiagen, life Technologies and Promega. Differing extraction geometric mean yields were evaluated across each of the kits tested, assessing dual DNA/RNA extraction vs. specialised single extraction, manual silica column based extraction techniques vs. automated magnetic bead based methods along with a comparison of subsequent nucleic acid purity methods, providing a full evaluation of nucleic acids isolated. Results: Out of the four RNA extraction kits evaluated the RNeasy FFPE kit, from Qiagen, gave superior geometric mean yields, whilst the Maxwell 16 automated method, from Promega, yielded the highest quality RNA by quantitative real time RT-PCR. Of the DNA extraction kits evaluated the PicoPure DNA kit, from Life Technologies, isolated 2–14× more DNA. A miniaturised qPCR assay was developed for DNA quantification and quality assessment. Conclusions: Careful consideration of an extraction kit is necessary dependent on quality or quantity of material required. Here we provide a flow diagram on the factors to consider when choosing an extraction kit as well as how to accurately quantify and QC the extracted material

    Childhood obesity and risk of the adult metabolic syndrome: a systematic review.

    Get PDF
    This is an Open Access articleBackground: While many studies have demonstrated positive associations between childhood obesity and adult metabolic risk, important questions remain as to the nature of the relationship. In particular, it is unclear whether the associations reflect the tracking of body mass index (BMI) from childhood to adulthood or an independent level of risk. This systematic review aimed to investigate the relationship between childhood obesity and a range of metabolic risk factors during adult life. Objective: To perform an unbiased systematic review to investigate the association between childhood BMI and risk of developing components of metabolic disease in adulthood, and whether the associations observed are independent of adult BMI. Design: Electronic databases were searched from inception until July 2010 for studies investigating the association between childhood BMI and adult metabolic risk. Two investigators independently reviewed studies for eligibility according to the inclusion/exclusion criteria, extracted the data and assessed study quality using the Newcastle–Ottawa Scale. Results: The search process identified 11 articles that fulfilled the inclusion and exclusion criteria. Although several identified weak positive associations between childhood BMI and adult total cholesterol, low-density lipo protein-cholesterol, triglyceride and insulin concentrations, these associations were ameliorated or inversed when adjusted for adult BMI or body fatness. Of the four papers that considered metabolic syndrome as an end point, none showed evidence of an independent association with childhood obesity. Conclusions: Little evidence was found to support the view that childhood obesity is an independent risk factor for adult blood lipid status, insulin levels, metabolic syndrome or type 2 diabetes. The majority of studies failed to adjust for adult BMI and therefore the associations observed may reflect the tracking of BMI across the lifespan. Interestingly, where adult BMI was adjusted for, the data showed a weak negative association between childhood BMI and metabolic variables, with those at the lower end of the BMI range in childhood, but obese during adulthood at particular risk
    corecore