950 research outputs found

    The structure of the RbBP5 β-propeller domain reveals a surface with potential nucleic acid binding sites

    Get PDF
    The multi-protein complex WRAD, formed by WDR5, RbBP5, Ash2L and Dpy30, binds to the MLL SET domain to stabilize the catalytically active conformation required for histone H3K4 methylation. In addition, the WRAD complex contributes to the targeting of the activated complex to specific sites on chromatin. RbBP5 is central to MLL catalytic activation, by making critical contacts with the other members of the complex. Interestingly its only major structural domain, a canonical WD40 repeat -propeller, is not implicated in this function. Here, we present the structure of the RbBP5 -propeller domain revealing a distinct, feature rich surface, dominated by clusters of Arginine residues. Our nuclear magnetic resonance binding data supports the hypothesis that in addition to the role of RbBP5 in catalytic activation, its -propeller domain is a platform for the recruitment of the MLL complexes to chromatin targets through its direct interaction with nucleic acids

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Gastroesophageal reflux disease in 2006: The imperfect diagnosis

    Get PDF
    There continues to be significant controversy related to diagnostic testing for gastroesophageal reflux disease (GERD). Clearly, barium contrast fluoroscopy is superior to any other test in defining the anatomy of the upper gastrointestinal (UGI) tract. Although fluoroscopy can demonstrate gastroesophageal reflux (GER), this observation does not equate to GERD. Fluoroscopy time should not be prolonged to attempt to demonstrate GER during barium contrast radiography. There are no data to justify prolonging fluoroscopy time to perform provocative maneuvers to demonstrate reflux during barium contrast UGI series. Symptoms of GERD may be associated with physiologic esophageal acid exposure measured by intraesophageal pH monitoring, and a significant percentage of patients with abnormal esophageal acid exposure have no or minimal clinical symptoms of reflux. Abnormal acid exposure defined by pH monitoring over a 24-h period does not equate to GERD. In clinical practice presumptive diagnosis of GERD is reasonably assumed by substantial reduction or elimination of suspected reflux symptoms during therapeutic trial of acid reduction therapy

    Motor Agency: A New and Highly Sensitive Measure to Reveal Agency Disturbances in Early Psychosis

    Get PDF
    Background: Early diagnosis of young adults at risk of schizophrenia is essential for preventive approaches of the illness. Nevertheless, classic screening instruments are difficult to use because of the non-specific nature of the signs at this preonset phase of illness. The objective of the present contribution was to propose an innovating test that can probe the more specific symptom of psychosis, i.e., the sense of agency, which is defined as being the immediate experience of oneself as the cause of an action. More specifically, we tested whether motor agency is abnormal in early psychosis. Methods: Thirty-two young symptomatic patients and their age-matched controls participated in the study. 15 of these patients were at ultra high-risk for developing psychosis (UHR), and 17 patients were suffering from first-episode psychosis (FEP). Patients ’ neurocognitive capacities were assessed through the use of seven neuropsychological tests. A motor agency task was also introduced to obtain an objective indicator of the degree of sense of agency, by contrasting force levels applied during other and self-produced collisions between a hand-held objet and a pendulum. Results: As reported in the literature for adult controls, healthy adolescents used more efficient force levels in self than in other-imposed collisions. For both UHR and FEP patients, abnormally high levels of grip force were used for self-produced collisions, leading to an absence of difference between self and other. The normalized results revealed that motor agency differentiated patients from controls with a higher level of sensitivity than the more classic neuropsychological test battery

    The role of reperfusion injury in photodynamic therapy with 5-aminolaevulinic acid – a study on normal rat colon

    Get PDF
    Reperfusion injury can occur when blood flow is restored after a transient period of ischaemia. The resulting cascade of reactive oxygen species damages tissue. This mechanism may contribute to the tissue damage produced by 5-aminolaevulinic acid-induced photodynamic therapy, if this treatment temporarily depletes oxygen in an area that is subsequently reoxygenated. This was investigated in the normal colon of female Wistar rats. All animals received 200 mg kg−1 5-aminolaevulinic acid intravenously 2 h prior to 25 J (100 mW) of 628 nm light, which was delivered continuously or fractionated (5 J/150 second dark interval/20 J). Animals were recovered following surgery, killed 3 days later and the photodynamic therapy lesion measured macroscopically. The effects of reperfusion injury were removed from the experiments either through the administration of free radical scavengers (superoxide dismutase (10 mg kg−1) and catalase (7.5 mg kg−1) in combination) or allopurinol (an inhibitor of xanthine oxidase (50 mg kg−1)). Prior administration of the free radical scavengers and allopurinol abolished the macroscopic damage produced by 5-aminolaevulinic acid photodynamic therapy in this model, regardless of the light regime employed. As the specific inhibitor of xanthine oxidase (allopurinol) protected against photodynamic therapy damage, it is concluded that reperfusion injury is involved in the mechanism of photodynamic therapy in the rat colon

    A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000

    Get PDF
    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Pain in patients with pancreatic cancer: prevalence, mechanisms, management and future developments

    Get PDF
    Pain affects approximately 80% of patients with pancreatic cancer, with half requiring strong opioid analgesia, namely: morphine-based drugs on step three of the WHO analgesic ladder (as opposed to the weak opioids: codeine and tramadol). The presence of pain is associated with reduced survival. This article reviews the literature regarding pain: prevalence, mechanisms, pharmacological, and endoscopic treatments and identifies areas for research to develop individualized patient pain management pathways. The online literature review was conducted through: PubMed, Clinical Key, Uptodate, and NICE Evidence. There are two principal mechanisms for pain: pancreatic duct obstruction and pancreatic neuropathy which, respectively, activate mechanical and chemical nociceptors. In pancreatic neuropathy, several histological, molecular, and immunological changes occur which correlate with pain including: transient receptor potential cation channel activation and mast cell infiltration. Current pain management is empirical rather etiology-based and is informed by the WHO analgesic ladder for first-line therapies, and then endoscopic ultrasound-guided celiac plexus neurolysis (EUS-CPN) in patients with resistant pain. For EUS-CPN, there is only one clinical trial reporting a benefit, which has limited generalizability. Case series report pancreatic duct stenting gives effective analgesia, but there are no clinical trials. Progress in understanding the mechanisms for pain and when this occurs in the natural history, together with assessing new therapies both pharmacological and endoscopic, will enable individualized care and may improve patients’ quality of life and survival

    Gastroesophageal reflux symptoms in infants in a rural population: longitudinal data over the first six months

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing numbers of infants are receiving prescription medications for symptoms associated with gastroesophageal reflux. Our aim was to prospectively measure reported gastroesophageal reflux symptoms in healthy term infants for the first six months of life.</p> <p>Methods</p> <p>In a prospective cohort study in the rural Upper Peninsula of Michigan, 128 consecutive maternal-infant pairs were followed for six months and administered the Infant Gastroesophageal Reflux Questionnaire Revised (I-GERQ-R) at the one-month, two-month, four-month, and six-month well-child visits.</p> <p>Results</p> <p>The I-GERQ-R scores decreased with age. Average scores were 11.74 (SE = 5.97) at one-month, 9.97(4.92) at two-months, 8.44(4.39) at four-months, and 6.97(4.05) at six months. Symptoms associated with colic were greatest at one month of age.</p> <p>Conclusion</p> <p>Symptoms of gastroesophageal reflux as measured by the I-GERQ-R decrease with age in the first six months of life in otherwise healthy infants; however the I-GERQ-R may have difficulty differentiating gastroesophageal reflux disease from colic in those under 3 months of age.</p

    New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay

    Get PDF
    Background Susceptibility-weighted imaging (SWI) is a relatively new magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification, as a new source of contrast enhancement. This pictorial review is aimed at illustrating and discussing its main clinical applications. Methods SWI is based on high-resolution, threedimensional (3D), fully velocity-compensated gradientecho sequences using both magnitude and phase images. A phase mask obtained from the MR phase images is multiplied with magnitude images in order to increase the visualisation of the smaller veins and other sources of susceptibility effects, which are displayed at best after postprocessing of the 3D dataset with the minimal intensity projection (minIP) algorithm. Results SWI is very useful in detecting cerebral microbleeds in ageing and occult low-flow vascular malformations, in characterising brain tumours and degenerative diseases of the brain, and in recognizing calcifications in various pathological conditions. The phase images are especially useful in differentiating between paramagnetic susceptibility effects of blood and diamagnetic effects of calcium. SWI can also be used to evaluate changes in iron content in different neurodegenerative disorders. Conclusion SWI is useful in differentiating and characterising diverse brain disorders
    corecore