218 research outputs found
A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations
A new framework for designing programmes of assessment
Research on assessment in medical education has strongly focused on individual measurement instruments and their psychometric quality. Without detracting from the value of this research, such an approach is not sufficient to high quality assessment of competence as a whole. A programmatic approach is advocated which presupposes criteria for designing comprehensive assessment programmes and for assuring their quality. The paucity of research with relevance to programmatic assessment, and especially its development, prompted us to embark on a research project to develop design principles for programmes of assessment. We conducted focus group interviews to explore the experiences and views of nine assessment experts concerning good practices and new ideas about theoretical and practical issues in programmes of assessment. The discussion was analysed, mapping all aspects relevant for design onto a framework, which was iteratively adjusted to fit the data until saturation was reached. The overarching framework for designing programmes of assessment consists of six assessment programme dimensions: Goals, Programme in Action, Support, Documenting, Improving and Accounting. The model described in this paper can help to frame programmes of assessment; it not only provides a common language, but also a comprehensive picture of the dimensions to be covered when formulating design principles. It helps identifying areas concerning assessment in which ample research and development has been done. But, more importantly, it also helps to detect underserved areas. A guiding principle in design of assessment programmes is fitness for purpose. High quality assessment can only be defined in terms of its goals
Running away experience and psychoactive substance use among adolescents in Taiwan: multi-city street outreach survey
<p>Abstract</p> <p>Background</p> <p>This study aimed to examine: 1) the relationship between being a runaway and the time since the first absconding event and adolescent substance use; 2) whether different kinds of psychoactive substances have a different temporal relationship to the first absconding event; and 3) whether the various reasons for the first absconding event are associated with different risks of substance use.</p> <p>Methods</p> <p>Participants were drawn from the 2004-2006 nationwide outreach programs across 26 cities/towns in Taiwan. A total of 17,133 participants, age 12-18 years, who completed an anonymous questionnaire on their experience of running away and substances use and who were now living with their families, were included in the analysis.</p> <p>Results</p> <p>The lifetime risk of tobacco, alcohol, betel nut, and illegal drug/inhalant use increased steadily from adolescents who had experienced a trial runaway episode (one time lasting ≤ 1 day), to those with extended runaway experience (≥ 2 times or lasting > 1 day), when compared to those who had never ran away. Adolescents who had their first running away experience > 6 months previously had a greater risk of betel nut or illegal drug/inhalant use over the past 6-months than those with a similar experience within the last 6 months. Both alcohol and tobacco use were most frequently initiated before the first running away, whereas both betel nut and illegal drug/inhalant use were most frequently initiated after this event. When adolescents who were fleeing an unsatisfactory home life were compared to those who ran away for excitement, the risk of alcohol use was similar but the former tended to have a higher risk of tobacco, betel nut, and illegal drug/inhalant use.</p> <p>Conclusions</p> <p>More significant running away and a longer time since the first absconding experience were associated with more advanced substance involvement among adolescents now living in a family setting. Once adolescents had left home, they developed additional psychoactive substance problems, regardless of their reasons for running away. These findings have implications for caregivers, teachers, and healthcare workers when trying to prevent and/or intervening in adolescent substance use.</p
Type I Interferon: Potential Therapeutic Target for Psoriasis?
Background: Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. Methodology/Principal Findings: We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-a subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-c and TNF-a–inducible gene signatures occurred at the same disease sites. Conclusions/Significance: Up-regulation of TNF-a and elevation of the TNF-a–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-a agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may b
Tamiflu-Resistant but HA-Mediated Cell-to-Cell Transmission through Apical Membranes of Cell-Associated Influenza Viruses
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to “right next door”: one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors
Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase
The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents
Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo.
A recent genome-wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9, but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces the release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that small interfering RNA loss of LMTK2 not only reduces binding of Smad2 to KLC2, but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling
Structural Annotation of Mycobacterium tuberculosis Proteome
Of the ∼4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for ∼2877 ORFs, covering ∼70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well
- …