37 research outputs found

    Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts

    Get PDF
    The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system

    Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: a cross-sectional analysis in the EPIC-InterAct study.

    Get PDF
    BACKGROUND: Accumulating evidence suggests that individual circulating saturated fatty acids (SFAs) are heterogeneous in their associations with cardio-metabolic diseases, but evidence about associations of SFAs with metabolic markers of different pathogenic pathways is limited. We aimed to examine the associations between plasma phospholipid SFAs and the metabolic markers of lipid, hepatic, glycaemic and inflammation pathways. METHODS: We measured nine individual plasma phospholipid SFAs and derived three SFA groups (odd-chain: C15:0 + C17:0, even-chain: C14:0 + C16:0 + C18:0, and very-long-chain: C20:0 + C22:0 + C23:0 + C24:0) in individuals from the subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study across eight European countries. Using linear regression in 15,919 subcohort members, adjusted for potential confounders and corrected for multiple testing, we examined cross-sectional associations of SFAs with 13 metabolic markers. Multiplicative interactions of the three SFA groups with pre-specified factors, including body mass index (BMI) and alcohol consumption, were tested. RESULTS: Higher levels of odd-chain SFA group were associated with lower levels of major lipids (total cholesterol (TC), triglycerides, apolipoprotein A-1 (ApoA1), apolipoprotein B (ApoB)) and hepatic markers (alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT)). Higher even-chain SFA group levels were associated with higher levels of low-density lipoprotein cholesterol (LDL-C), TC/high-density lipoprotein cholesterol (HDL-C) ratio, triglycerides, ApoB, ApoB/A1 ratio, ALT, AST, GGT and CRP, and lower levels of HDL-C and ApoA1. Very-long-chain SFA group levels showed inverse associations with triglycerides, ApoA1 and GGT, and positive associations with TC, LDL-C, TC/HDL-C, ApoB and ApoB/A1. Associations were generally stronger at higher levels of BMI or alcohol consumption. CONCLUSIONS: Subtypes of SFAs are associated in a differential way with metabolic markers of lipid metabolism, liver function and chronic inflammation, suggesting that odd-chain SFAs are associated with lower metabolic risk and even-chain SFAs with adverse metabolic risk, whereas mixed findings were obtained for very-long-chain SFAs. The clinical and biochemical implications of these findings may vary by adiposity and alcohol intake

    The global impact of non-communicable diseases on macro-economic productivity: a systematic review

    Get PDF
    © 2015, The Author(s). Non-communicable diseases (NCDs) have large economic impact at multiple levels. To systematically review the literature investigating the economic impact of NCDs [including coronary heart disease (CHD), stroke, type 2 diabetes mellitus (DM), cancer (lung, colon, cervical and breast), chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)] on macro-economic productivity. Systematic search, up to November 6th 2014, of medical databases (Medline, Embase and Google Scholar) without language restrictions. To identify additional publications, we searched the reference lists of retrieved studies and contacted authors in the field. Randomized controlled trials, cohort, case–control, cross-sectional, ecological studies and modelling studies carried out in adults (>18 years old) were included. Two independent reviewers performed all abstract and full text selection. Disagreements were resolved through consensus or consulting a third reviewer. Two independent reviewers extracted data using a predesigned data collection form. Main outcome measure was the impact of the selected NCDs on productivity, measured in DALYs, productivity costs, and labor market participation, including unemployment, return to work and sick leave. From 4542 references, 126 studies met the inclusion criteria, many of which focused on the impact of more than one NCD on productivity. Breast cancer was the most common (n = 45), followed by stroke (n = 31), COPD (n = 24), colon cancer (n = 24), DM (n = 22), lung cancer (n = 16), CVD (n = 15), cervical cancer (n = 7) and CKD (n = 2). Four studies were from the WHO African Region, 52 from the European Region, 53 from the Region of the Americas and 16 from the Western Pacific Region, one from the Eastern Mediterranean Region and none from South East Asia. We found large regional differences in DALYs attributable to NCDs but especially for cervical and lung cancer. Productivity losses in the USA ranged from 88 million US dollars (USD) for COPD to 20.9 billion USD for colon cancer. CHD costs the Australian economy 13.2 billion USD per year. People with DM, COPD and survivors of breast and especially lung cancer are at a higher risk of reduced labor market participation. Overall NCDs generate a large impact on macro-economic productivity in most WHO regions irrespective of continent and income. The absolute global impact in terms of dollars and DALYs remains an elusive challenge due to the wide heterogeneity in the included studies as well as limited information from low- and middle-income countries.WHO; Nestle´ Nutrition (Nestec Ltd.); Metagenics Inc.; and AX

    Confined rapid thermolysis studies of ammonia borane

    No full text
    Thermochemical calculations of ammonia borane (AB, H3NBH3), which has a hydrogen content of 19.6% by weight, indicate that it has the potential to boost specific impulse in chemical propulsion applications due to its high hydrogen content and the moderate exothermicity of decomposition. Research to date on AB decomposition has focused on relatively slow heating rates. These studies have shown that the mass lost due to decomposition increases with increasing heating rate. This trend has been confirmed in this work, as mass loss continues to increase up to 50 K/min, the limit of most TGA/DSC instruments. In this research effort, confined rapid thermolysis was used to examine the decomposition of AB under isothermal conditions. Fourier transform infrared (FTIR) spectroscopy and time-of-flight mass spectrometry (ToF-MS) were employed to identify the gaseous products, which include H-2, NH3, H2NBH2, and c-N3B3H6. The decomposition resulted in significant condensed-phase products as well, which were pressed into a KBr pellet and examined with FTIR spectroscopy. FTIR transmission spectra of the condensed-phase products with several heating durations show the disappearance of absorption bands of AB and appearance of bands attributed to polymeric species. Condensable gas-phase products were also collected from the stream of decomposition products, and FTIR spectroscopy showed they have absorption bands similar to the polymeric species, indicating that the H2NBH2 will readily condense out of the gas-phase products and polymerize at low temperatures. (C) 2012 Elsevier B.V. All rights reserved

    Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system

    No full text
    Bacteria use adaptive immune systems encoded by CRISPR and Cas genes to maintain genomic integrity when challenged by pathogens and mobile genetic elements1,2,3. Type I CRISPR–Cas systems typically target foreign DNA for degradation via joint action of the ribonucleoprotein complex Cascade and the helicase–nuclease Cas34,5, but nuclease-deficient type I systems lacking Cas3 have been repurposed for RNA-guided transposition by bacterial Tn7-like transposons6,7. How CRISPR- and transposon-associated machineries collaborate during DNA targeting and insertion remains unknown. Here we describe structures of a TniQ–Cascade complex encoded by the Vibrio cholerae Tn6677 transposon using cryo-electron microscopy, revealing the mechanistic basis of this functional coupling. The cryo-electron microscopy maps enabled de novo modelling and refinement of the transposition protein TniQ, which binds to the Cascade complex as a dimer in a head-to-tail configuration, at the interface formed by Cas6 and Cas7 near the 3′ end of the CRISPR RNA (crRNA). The natural Cas8–Cas5 fusion protein binds the 5′ crRNA handle and contacts the TniQ dimer via a flexible insertion domain. A target DNA-bound structure reveals critical interactions necessary for protospacer-adjacent motif recognition and R-loop formation. This work lays the foundation for a structural understanding of how DNA targeting by TniQ–Cascade leads to downstream recruitment of additional transposase proteins, and will guide protein engineering efforts to leverage this system for programmable DNA insertions in genome-engineering applications.Part of this work was performed at the Simons Electron Microscopy Center and National Resource for Automated Molecular Microscopy located at the New York Structural Biology Center, supported by grants from the Simons Foundation (SF349247), NYSTAR and the NIH National Institute of General Medical Sciences (GM103310)
    corecore