1,711 research outputs found

    Salt forms of sulfadiazine with alkali metal and organic cations

    Get PDF
    The structures of four salt forms of sulfadiazine (SDH) with alkali metal cations are presented. Three contain the deprotonated SD anion. These are the discrete complex [Li(SD)(OH2)2], (I), and the coordination polymers [Na(SD)]n, (II), and [K(SD)(OH2)2]n, (III). The Na complex (II) is a three-dimensional coordination polymer whilst the K complex (III) has two crystallographically independent [K(SD)(OH2)2] units per asymmetric unit, Z′ = 2, and gives a two dimensional coordination polymer whose layers propagate parallel to the crystallographic ab plane. The different bonding modes of the SD anion in these three complexes is discussed. Structure (IV) contains protonated SDH2 cations and the Orange G (OG), C16H10N2O7S2, dianion in a structure with formula [SDH2]2[Na(OG)(OH2)4]2·3H2O. The [Na(OG)(OH2)4]2 dimers have antiparallel naphthol ring structures joined through two Na centres that bond to the hydrazone anions through the O atoms of the ketone and sulfonate substituents. The structures of the salts formed on reaction of SDH with 2-aminopyridine and ethanolamine are also presented as [C5H7N2][SD], (V), and [HOCH2CH2NH3][SD]·H2O, (VI), respectively. Structure (V) features a heterodimeric R2 2(8) hydrogen bond motif between the cation and the anion whilst structure (VI) has a tetrameric core of two cations linked by a central R2 2(10) hydrogen bonded motif which supports two anions linked to this core by R3 3(8) motifs

    Segmental musculoskeletal examinations using dual-energy X-ray absorptiometry (DXA): Positioning and analysis considerations

    Get PDF
    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, in-consistencies pertaining to patient positioning exist in the litera-ture which influence measurement precision and analysis out-comes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental exam-inations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football ath-letes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investiga-tor on three separate days, and by three independent investiga-tors a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coeffi-cients (ICC) were determined. Positioning and segmental analy-sis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient posi-tioning and image analysis procedures outlined in this paper

    Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function.

    Get PDF
    In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically

    What do older people learn from young people? : Intergenerational learning in ‘day centre’ community settings in Malta

    Get PDF
    This study analyses what motivates older people to attend ‘day centres’ in Malta and what they believe that they derive from young people who carry out their placements at these day ‘centres’ These young people, who are aged 16–17, attend a vocational college in Malta and are studying health and social care. The study is based on a qualitative approach and employs the usage of focus groups. The main findings are that the elderly see the students as helping them on an emotional level by giving them encouragement, and on a practical level, by offering them insights that help them in modern-day life

    Mi-Learn : an evaluation of an m-learning management system

    Get PDF
    M-Learning is a novel concept concerned with delivering learning content over mobile devices, which today is being seen as a way to support for conventional and collaborative learning as well as for extending the scope of e-learning. This paper presents the work carried out on a research project named Mi-Learn, whose goal is that of gathering background knowledge within the field of m-learning, identification of related research problems, and creating an environment where solutions to these problems can be identified and evaluated. Pocket SCORM initiatives such as [ADL04] that are working towards a set of standards for m-learning have identified the restricted user interface and the requirement for offline learning sessions as the two major challenges in this area. The work presented in this paper forms part of the first phase of an m- learning research project and concentrates on the first of these challenges. By means of a pilot m-learning management system, an evaluation exercise was carried out in order to assess the impact of a restricted user interface on the learning experience. The evaluation carried out takes both the pedagogical and user interface aspects as the evaluation criteria. Evaluation results show that currently there seems to be a value for m-learning, but more as an extension for exiting e-learning programmes rather than a complete learning management system on its own. The results also helped in clarifying the research area and setting a direction for further research work.peer-reviewe

    Mapping the breast cancer metastatic cascade onto ctDNA using genetic and epigenetic clonal tracking.

    Get PDF
    Circulating tumour DNA (ctDNA) allows tracking of the evolution of human cancers at high resolution, overcoming many limitations of tissue biopsies. However, exploiting ctDNA to determine how a patient's cancer is evolving in order to aid clinical decisions remains difficult. This is because ctDNA is a mix of fragmented alleles, and the contribution of different cancer deposits to ctDNA is largely unknown. Profiling ctDNA almost invariably requires prior knowledge of what genomic alterations to track. Here, we leverage on a rapid autopsy programme to demonstrate that unbiased genomic characterisation of several metastatic sites and concomitant ctDNA profiling at whole-genome resolution reveals the extent to which ctDNA is representative of widespread disease. We also present a methylation profiling method that allows tracking evolutionary changes in ctDNA at single-molecule resolution without prior knowledge. These results have critical implications for the use of liquid biopsies to monitor cancer evolution in humans and guide treatment
    • …
    corecore