- 1 Salt forms of sulfadiazine with alkali metal and organic cations.
- 2 Gemma Campbell, Rebecca Fisher, Alan R. Kennedy,* Nathan L. C. King and Rebecca Spiteri
- 3 Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
- 4 Correspondence email: a.r.kennedy@strath.ac.uk
- 5 Abstract
- 6 The structures of four salt forms of sulfadiazine (SDH) with alkali metal cations are presented. Three contain the
- 7 deprotonated SD anion. These are the discrete complex [Li(SD)(OH₂)₂], (I), and the coordination polymers [Na(SD)]_n,
- (II), and $[K(SD)(OH_2)_2]_n$, (III). The Na complex (II) is a three-dimensional coordination polymer whilst the K complex
- 9 (III) has two crystallographically independent $[K(SD)(OH_2)_2]$ units per asymmetric unit, Z' = 2, and gives a two-
- 10 dimensional coordination polymer whose layers propagate parallel to the crystallographic *ab* plane. The different bonding
- modes of the SD anion in these three complexes is discussed. Structure (IV) contains protonated SDH₂ cations and the
- 12 Orange G (OG), $C_{16}H_{10}N_2O_7S_2$, dianion in a structure with formula $[SDH_2]_2[Na(OG)(OH_2)_4]_2 \cdot 3H_2O$. The $[Na(OG)(OH_2)_4]_2 \cdot 3H_2O$.
- dimers have antiparallel naphthol ring structures joined through two Na centres that bond to the hydrazone anions
- through the O atoms of the ketone and sulfonate substituents. The structures of the salts formed on reaction of SDH with
- ¹⁵ 2-aminopyridine and ethanolamine are also presented as [C₅H₇N₂][SD], (V), and [HOCH₂CH₂NH₃][SD]·H₂O, (VI),
- respectively. Structure (V) features a heterodimeric $R_2^2(8)$ hydrogen bond motif between the cation and the anion whilst
- structure (VI) has a tetrameric core of two cations linked by a central $R_2^2(10)$ hydrogen bonded motif which supports two
- anions linked to this core by $R_3^3(8)$ motifs.
- 19 Keywords: crystal structure, active pharmaceutical ingredients, salt selection, sulfadiazine, sulfa drugs
- 3scheme1.tif

3scheme2.tif

(IV)

20 1. Comment

- 21 The active pharmaceutical ingredient (API) 4-amino-*N*-(pyrimidin-2-yl)-benzenesulfonamide is commonly known as
- sulfadiazine (SDH) and is a well known antibiotic. Common variants are its Ag(I) complex which is used in creams and
- impregnated medical devices, and its Na salt which is used intravenously (Fisher *et al.*, 2003; Ghedini *et al.*, 2017;
- Mohseni *et al.*, 2016; Preskey & Kayes, 1976). SDH is amphoteric, allowing salt formation reactions to be carried out
- 25 with both acids and bases. This is a pharmaceutically useful as salt formation is the commonest route used to modify the
- 26 performance critical material properties (e.g. aqueous solubility, melting point or mechanical properties) of APIs (Stahl &
- 27 Wermuth, 2008).
- 28 Structural studies of protonated SDH₂ cations as a variety of salt forms have been published, (e.g. Pan et al., 2013; Buist
- *et al.*, 2014) as have studies of cocrystal phases featuring neutral SDH (*e.g.* Elacqua *et al.*, 2013). Structures of the
- 30 deprotonated SD anion are also well represented in the literature. These include the structure of the commercially utilized
- Ag(I) complex (Baenziger & Struss, 1976) and of many transition metal complexes, especially those involving the
- heavier first row transition metals Co, Ni, Cu and Zn (e.g. Shi et al., 2015; Sun et al., 2016; Pan et al., 2012). Salt
- 33 structures of SD with organic cations are also well known (*e.g.* Elacqua *et al.*, 2013; Heren *et al.*, 2006). Somewhat
- strangely, there are very few structural studies of s-block metal complexes of SD. As far as we are aware, the only known
- s-block metal structure is that of a Ca salt form (Tommasino *et al.*, 2011). Given the ubiquity of s-block metal salt usage
- in pharmaceutical materials in general, and the long-standing commercial use of [Na][SD] in particular, this seemed an
- odd omission (Stahl & Wermuth, 2008; Preskey & Kayes, 1976). The current study adds to our knowledge of sulfadiazine
- 38 structural chemistry by reporting the structures of three alkali metal salt forms of SD with Li, Na and K, structures (I),
- 39 (II) and (III) respectively, as well as the structure formed when the sulfonated azo dye sodium Orange G (OG) crystallizes
- in the presence of SDH to give a form containing both Na and SDH₂ cations, (IV). Finally, the structures of two new
- organic salt forms (V) and (VI), prepared by reaction of SDH with the bases 2-aminopyridine and ethanolamine, are also
- 42 presented for comparison.
- ⁴³ The structure of the lithium salt (I) was found to consist of a simple discrete coordination compound of type [Li(SD)
- (OH₂)₂], see Figure 1. Extensive hydrogen bonding creates a three-dimensional hydrogen bonding network, Table 3. The
- 45 SD anion acts in a chelating fashion to form a 6-membered [LiOSNCN] ring through Li to O and Li to heterocyclic N
- 46 bonds. Thus although the Li coordination geometry is tetrahedral, the bond angles are considerably distorted due to the
- small bite angle of the chelate (range 90.91 (18) to 126.9 (2) °), see Table 2 for details of bond lengths and angles. This
- 48 O,N chelation mode is unusual. Discrete d-block metal complexes of SD normally bond to metal centres through a N,N
- chelate utilizing both the ring and sulfamide N atoms (e.g. Shi et al., 2015; Sun et al., 2016; Pan et al., 2012). The same is
- true of the Ca salt (Tommasino *et al.*, 2011). The polymer $[Zn(SD)]_n$ does feature a similar O, N chelation mode (Yuan *et al.*, 2011).
- al., 2001) and the dimeric species [Cu₂(SD)₄] can be described as containing Cu—O bonds, but these are very long (2.55)
- to 2.75 Å) and form 4-membered chelate rings through interactions with the sulfamide N atom rather than the 6-
- 53 membered ring involving the aromatic ring observed for (I) (Shi *et al.*, 2015). The structure of the pharmaceutically
- important coordination polymer $[Ag(SD)]_n$ does contain the O,N chelation mode seen for (I) with the polymer
- 55 propagating through both the common N,N chelation mode and the O,N mode (Baenziger & Struss, 1976).
- $_{56}$ Like the Ag complex, the structure of anhydrous $[Na(SD)]_n$ (II) forms a coordination polymer through each SD anion
- 57 making two chelating interactions with two metal centres. One such interaction forms a 6-membered NaOSNCN ring
- with a O,*N* bonding mode and the other forms a NaNCN ring with a N,*N* mode. The coordination polymer is further
- 60 form one-dimensional coordination chains that propagate parallel to the crystallographic *a* direction. Unlike the Ag

complex, in (II) the amine group of the ligand also takes part in bonding. This gives 6 coordinate Na centres, Table 4. 61 This last interaction type links the individual chains through amine to Na bonds and gives the overall three-dimensional 62 coordination polymer shown in Fig. 4. We are aware no other examples of anionic SD bonding to metal through its NH₂ 63 tail. The coordination polymer is supported by amine to SO_2 N=H···O hydrogen bonds as described in Table 5. The K salt (III) is a dihydrate with two crystallographically independent $[K(SD)(OH_2)_2]$ units per asymmetric unit, Z' =65 2, see Fig. 5. Of the 4 independent water molecules, two (O2W and O3W) act as terminal ligands whilst O1W bridges 66 between K1 and K1' (' = 1 - x, 1 - y, 1 - z) and O3W interestingly bridges between three K centres (K1, K2 and K1'' 67 where "=-x, 1-y, 1-z), see Table 6 for details. The two independent SD anions also have different bonding modes, the ligand containing O3 utilizes both of its O atoms and 3 of its N atoms to bond between 4 separate K centres. Each N atom 69 bonds to only one K centre with the O atoms both bridging between two K centres. Like the Na and Ag species, above, 70 this ligand features both N, N 4-membered ring forming and O, N 6-membered ring forming chelation modes. Perhaps 71 surprisingly, the other SD anion adopts a bonding mode that forms only two donor to K contacts and bonds to only one K 72 centre. Atoms O1 and N1 (the sulfamide N atom) bond to K2. This O,N [KOSN] 4-membered ring forming bonding mode is not seen for other s-block metals with SD but can be observed in the structure of $[Cu_2(SD)_4]$ (Shi et al., 2015). 74 See Table 12 for a summary of the different bonding modes adopted by SD with alkali metals. A final difference between 75 the two SD ligands is conformational. The SD anion that bonds to multiple K centres has the same conformation as that found for the SD anions in all the other structures reported herin. That is, one of the SO₂ O atoms lies close to the plane of the aniline ring and the pyrimidine ring is syn to this O atom. However, the SD anion that makes only 2 bonds to K2 has an alternative conformation where it is the amide N atom and not an O atom that lies closest to the plane of the 79 aniline ring (N1S1C5C6 = $17.7 (4)^{\circ}$). The coordination bonds combine to give two-dimensional coordination polymers 80 that propagate parallel to the *ab* plane and gives the layered structure shown in Fig. 6, with organic bilayers and inorganic layers alternating along the crystallographic c direction. Hydrogen bonds from the amine group link between 82 neighbouring two-dimensional coordination polymers, Table 7. 83 Crystallized from SDH in the presence of acid and the sodium salt of OG, (IV) has the general formula 84 [SDH₂]₂[Na(OG)(OH₂)₄]₂·3H₂O, Fig. 7. We are unaware of any other structure containing both a metal cation and cationic 85 SDH₂. There are 4 independent water ligands bound to Na1. These are ordered but the non-coordinated water molecules 86 are not and have been modelled over 3 crystallographic sites, each with site occupancy factor of 0.5. In common with 87 other sulfonated azo species based on naphthol units, the dye adopts the hydrazone tautomeric form with protonation at 88 N6 of the N=N group (Kennedy et al., 2012). This leads to characteristic lengthening (e.g. N=N, C-C) and shortening (e.g. O-C, N-C) of relevant bonds compared to similar azo species. Compare values in Table 8 with e.g. 1.253 (2) and 90 1.418 (3) Å for N=N and N—C bond lengths in a typical azo species (Kennedy et al., 2001). The dimeric unit is shown in 91 Fig. 8 and is crystallographically centrosymmetric, Z' = 0.5. The naphthol units lie antiparallel to each other with an 92 octahedral Na centre at each end. In addition to the 4 terminal water ligands, each Na centre bonds to the ketone group of 93 one anion and to atom O7 of a sulfonate group of a second anion thus creating the dimeric unit. See Tables 8 and 9 for 94 bonding parameters. There is some degree of π to π stacking across this dimer as is indicated by a minimum C⁻⁻C distance 95 of 3.482 (2) Å (between C11 and the C15 atom at -x, 1 - y, -z). Orange G is exceptional amongst sulfonated azo 96 colourants in having being widely studied crystallographically. Structures are known for its s-block metal salts, for its 97 complexes with transition metals and for salt forms with organic cations (Kennedy et al., 2006; Ojala et al., 1994b; 98 Kennedy et al., 2010; Ojala et al., 1994a). However, the dimeric unit observed here is not seen for other s-block metal 99 salt forms of OG. The closest motif occurs in the Ag(I) complex of OG, where a similar dimer forms part of a larger 100 polymeric coordination network (Kennedy, et al., 2006). The sulfadiazine cation is found to have three H atoms bound to 101 N4, the aniline group, and one H atom bound to N3 of the pyrimidine ring. In contrast, previous work had found that 102

- SDH₂ cations adopted this tautomeric form with simple anions but with sulfonate anions gave the alternative tautomer 103
- with protonation at the amide N atom (Buist et al., 2014). The geometry of the SDH₂ cation is somewhat different from 104
- those of the SD anions in the other structures presented. Conformationally, it is again an O atom that lies closest to the 105
- plane of the aniline ring, but in contrast to the SD anions this O atom is anti to the pyrimidine ring. An expected small 106
- increase in S—N bond length is also seen for SDH₂ as compared to the SD anions (Elacqua et al., 2013; Buist et al., 107
- 2014). Another feature common in other structures with SDH₂ cations is a centrosymmetric $R_2^2(8)$ hydrogen bonded 108 dimer of cations formed utilizing amide and pyrimidine N atoms (Buist et al., 2014). This motif is retained in (IV).
- Structure (IV) has a layered structure with hydrophylic/inorganic layers parallel to the bc plane alternating with hydro-110
- phobic/organic layers. 111
- Formed from the reaction of SDH with 2-aminopyridine, structure (V) is that of $[C_6H_4N(H)NH_2][SD]$, Fig 9. It features 112
- a heterodimeric $R_2^2(8)$ hydrogen bond between the cation and the amide N atom and one pyrimidine ring N atom of the 113
- SD anion, Fig 10. There are also anion to anion interactions with the amine group of the SD anion donating two hydrogen 114
- bonds to O atoms of two neighbouring SD anions. A final hydrogen bond is of type N-H...N and is donated by the 115
- pyridine amine group to the SD amine group, see Table 10 for details. Unusually this leaves one N atom of the pyrimidine 116
- ring with no hydrogen bonding interaction. The resulting structure has layers formed of heteroaromatic rings (both 117
- pyridine and pyrimidine) alternating with layers of aniline groups, these layers lie parallel to the crystallographic ac 118
- plane. 119

109

- Structure (VI) was obtained on the reaction of SDH with ethanolamine and is that of the hydrate, [HOCH₂CH₂NH₃] 120
- [SD]·H₂O, Fig 11. The dimeric $R_2^2(8)$ hydrogen bonded motif does not occur in this structure. It is replaced by a 121
- tertrameric unit comprising the amide N atom and one pyrimidine ring N atom of two SD anions interacting with a 122
- centrosymmetric dimer of HOCH₂CH₂NH₃ cations, see Fig 12. Thus there are two $R_3^{3}(8)$ motifs supported by a central 123
- $R_2^2(10)$ motif. The tetramers are linked by hydrogen bonding through a bifurcated bond from H4N to O and N acceptors 124
- on a SD anion and through the water molecules. Each water molecule interacts with 4 neighbouring SD anions. Thus 125
- each water molecule donates two hydrogen bonds to O atoms of SD anions and accepting two hydrogen bonds from the 126
- SD amine groups, see Table 11 for details. 127
- 2. Synthesis and crystallization 128
- The simple salt forms were prepared by reacting 1:1 molar mixtures of sulfadiazine and MOH (M = Li, Na, K) or the 129
- organic base in 50:50 water:ethanol. The mixtures were stirred and heated to give clear solutions before being left to cool 130
- to room temperature. Partial evaporation of these reaction mixtures over 4 to 7 days gave suitable crystals of (I), (III), (V) 131
- and (VI) but a fine powder for the Na salt. Good quality crystals of the Na salt (II) were obtained by vapour diffusion of 132
- ethanol into an aqueous solution of sodium sulfadiazine. The Na OG complex (IV) was obtained by dissolving 0.20 g, 133
- 0.44 mmol of NaOG in the minimum amount of water. A slight excess of sulfadiazine (0.12 g, 0.48 mmol) was also 134
- dissolved in the minimum amount of water. The two solutions were mixed together with stirring and acidified with 135
- concentrated HCl. After 3 days, orange crystals of (IV) had grown. 136
- 3. Refinement 137
- For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding modes 138
- with U(H)_{iso} = $1.2U(C)_{eq}$. For aromatic groups C–H = 0.95 Å and for CH₂ groups C–H = 0.95 Å. All H atoms bound to N 139
- were refined freely and isotropically as were H atoms bound to O in structure (VI). H atoms of water molecules in (I), 140
- (III) and (IV) were located by difference syntheses and required restraints to be applied such that O-H = 0.88 (1) Å and 141
- $H \cdots H = 1.33$ (2) Å. For these atoms of (III) U(H)_{iso} = 1.5U(O)_{eq}, whilst for (I) and (IV) U(H)_{iso} were refined. 142

For (IV), after several trial calculations, the three non-coordinated water molecules were given site occupancy factors of 0.5. For (III) the H atoms of one water ligand were modelled as disordered over three sites.

145 **Figure 1**

fig1.tif

146 Molecular structure of the Li salt (I) with non-H atoms shown as 50% probability ellipsoids.

- 147 **Figure 2**
- 148 Contents of the asymmetric unit of the Na salt (II) with non-H atoms shown as 50% probability ellipsoids.

fig2.tif

149 **Figure 3**

- 150 Part of the extended structure of (II) showing the dative bonds that give a one-dimensional chain that extends in the
- 151 crystallographic *a* direction. H atoms are omitted for clarity. Here and in other colour figures, black = C, blue = N, red =
- 152 O, yellow = S, pink = alkali metal.

fig4.tif

fig3.tif

- 153 Figure 4
- 154 Packing diagram for (II) with view down the *a* axis direction.

- 155 **Figure 5**
- 156 Contents of the asymmetric unit of the K salt (III) with non-H atoms shown as 50% probability ellipsoids. Disordered H
- 157 atom positions on water ligand O4W are not shown.

fig5.tif

fig6.tif

- 158 **Figure 6**
- 159 Packing diagram for showing the layered structure of (III) with view down the *a* axis direction.

- 160 Figure 7
- 161 Contents of the asymmetric unit of (IV) with non-H atoms shown as 50% probability ellipsoids. Disordered H atom
- 162 positions on water molecules are not shown.

fig8.tif

fig7.tif

- 163 Figure 8
- 164 View of the dimeric [Na(H₂O)₄]₂[OG]₂ fragment found in structure (IV).

- 165 **Figure 9**
- 166 Contents of the asymmetric unit of (V) with non-H atoms shown as 50% probability ellipsoids.
- fig10.tif

- 167 Figure 10
- 168 Detail from the structure of (V) highlighting the $R_2^2(8)$ cation to anion hydrogen bond interaction and the role of the
- 169 amine groups.

170 Figure 11

- 171 Contents of the asymmetric unit of (VI) with non-H atoms shown as 50% probability ellipsoids.
- fig12.tif

fig11.tif

- 172 **Figure 12**
- 173 Detail from the structure of (VI) showing the hydrogen bonded tetramer formed by two cations and two anions.
- 174 **Table 1**
- 175 Experimental details

176	(I)	(II)	(III)	(IV)	
177	Crystal data				

178	Chemical formula	C ₁₀ H ₁₃ LiN ₄ O ₄ S	C ₁₀ H ₉ N ₄ NaO ₂ S 272 26	C ₁₀ H ₁₃ KN ₄ O ₄ S 324 40	$C_{26}H_{32}N_6NaO_{14.50}S_3$ 779 74
180	Crystal system, space	Monoclinic, Cc	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
181	Temperature (K)	123	123	123	100
182	a, b, c (Å)	11.5095 (4), 12.0788 (5), 9.5184 (4)	5.9010 (11), 10.534 (4), 18.389 (3)	8.8503 (7), 9.6385 (4), 15.9734 (7)	12.7688 (1), 16.9040 (1), 15.7411 (1)
183	α, β, γ (°)	90, 91.063 (3), 90	90, 94.216 (15), 90	92.350 (4), 95.186 (4), 94.209 (4)	90, 107.609 (1), 90
184	$V(Å^3)$	1323.03 (9)	1140.0 (5)	1351.79 (13)	3238.42 (4)
185	Ζ	4	4	4	4
186	Radiation type	Μο Κα	Μο Κα	Cu Ka	Cu Ka
187	$\mu \text{ (mm}^{-1})$	0.26	0.32	5.09	2.95
188	Crystal size (mm)	$0.30 \times 0.20 \times 0.18$	$0.35 \times 0.12 \times 0.08$	0.28 imes 0.15 imes 0.10	$0.12 \times 0.08 \times 0.04$
189					
190	Data collection				
191	Diffractometer	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Gemini S	XtaLAB AFC11 (RCD3)
192 193 194	Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 0.949, 1.000 3390, 2246, 2184	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 0.961, 1.000 5903, 2786, 2351	Multi-scan <i>CrysAlis PRO</i> , Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 0.601, 1.000 15580, 5357, 3951	Multi-scan <i>CrysAlis PRO</i> 1.171.39.34b (Rigaku Oxford Diffraction, 2017) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 0.615, 1.000 59125, 5913, 5686
195	$R_{\rm int}$	0.016	0.029	0.050	0.027
196	$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.682	0.693	0.623	0.602
197					
198	Refinement				
199	$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.026, 0.066, 1.04	0.038, 0.088, 1.06	0.060, 0.157, 1.05	0.028, 0.075, 1.05
200	No. of reflections	2246	2786	5357	5913
201	No. of parameters	207	171	404	537
202	No. of restraints	8	0	14	13
203	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a t mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
204	$\Delta ho_{\rm max}, \Delta ho_{\rm min} ({ m e \ { m \AA}^{-3}})$	0.28, -0.25	0.43, -0.46	0.81, -0.45	0.26, -0.39

205	Absolute structure	Refined as an inversion twin.	1?	?	?
206	Absolute structure	-0.01 (8)	?	?	?
	parameter				

207		(V)	(VI)
208	Crystal data		
209	Chemical formula	$C_{15}H_{16}N_6O_2S$	$C_{12}H_{19}N_5O_4S$
210	$M_{ m r}$	344.40	329.38
211	Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
212	Temperature (K)	123	123
213	<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.5796 (2), 19.0371 (5), 11.2512 (4)	12.7755 (4), 9.8979 (4), 11.5366 (4)
214	α, β, γ (°)	90, 121.116 (3), 90	90, 93.508 (3), 90
215	$V(Å^3)$	1573.27 (9)	1456.08 (9)
216	Ζ	4	4
217	Radiation type	Μο Κα	Μο Κα
218	$\mu \text{ (mm}^{-1})$	0.23	0.25
219	Crystal size (mm)	0.4 imes 0.3 imes 0.02	$0.25 \times 0.24 \times 0.12$
220			
221	Data collection		
222	Diffractometer	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E
223	Absorption correction	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
224	T_{\min}, T_{\max}	0.527, 1.000	0.904, 1.000
225	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22193, 4082, 3225	7213, 3571, 2942
226	$R_{ m int}$	0.040	0.023
227	$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.682	0.694
220	Refinement		
220	$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.045 0.114 1.04	0.037 0.095 1.06
230	No of reflections	4082	3571
237	No. of parameters	237	231
232	No. of restraints	0	0
234	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
235	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.39, -0.48	0.45, -0.47
236	Absolute structure	?	?

237 Absolute structure parameter?

?

238 Computer programs: CrysAlis PRO (Agilent, 2014), CrysAlis PRO, SIR92 (Altomare et al., 1994), SHELXS (Sheldrick, 2015), SHELXL2014 (Sheldrick,

239 2015), Mercury (Macrae et al., 2008), SHELXL2014.

240 **Table 2**

241 Selected geometric parameters (Å, °) for (I)

242	Li1—O2W	1.870 (4)	Li1—O1	1.934 (5)
243	Li1—O1W	1.910 (5)	Li1—N2	2.077 (5)
244				
245	O2W—Li1—O1W	101.5 (2)	O2W—Li1—N2	107.1 (2)
246	O2W—Li1—O1	126.9 (2)	O1W—Li1—N2	124.1 (2)
247	O1W—Li1—O1	108.5 (2)	O1—Li1—N2	90.91 (18)

248 Table 3

249 Hydrogen-bond geometry (Å, °) for (I)

250	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
251	O1W—H1W····O2 ⁱ	0.875 (12)	2.051 (16)	2.881 (2)	158 (3)
252	O2W—H3W…N1 ⁱⁱ	0.865 (12)	1.949 (15)	2.805 (3)	170 (4)
253	O1W—H2W…N3 ⁱⁱ	0.867 (12)	1.970 (12)	2.837 (3)	178 (3)
254	O2W—H4W…N4 ⁱⁱⁱ	0.863 (12)	2.006 (12)	2.866 (3)	174 (4)
255	N4—H1N····O2 ^{iv}	0.84 (3)	2.40 (3)	3.070 (3)	137 (3)

256 Symmetry codes: (i) x, -y+1, z-1/2; (ii) x+1/2, -y+1/2, z-1/2; (iii) x, -y, z-1/2; (iv) x+1/2, y-1/2, z.

257 **Table 4**

258 Selected bond lengths (Å) for (II)

	,
2.4533 (15) Na1—N4 ^m 2.5771 (19)
261 Na1—O1 2.4647 (17) Na1—N2 ⁱ 2.6670 (17))

262 Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z; (iii) -x+1, y-1/2, -z+1/2.

263 Table 5

264 Hydrogen-bond geometry (Å, °) for (II)

265	D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
266	N4—H1N····O2 ^{iv}	0.86 (2)	2.06 (2)	2.907 (2)	166 (2)
267	N4—H2N····O1 ^v	0.91 (2)	2.52 (2)	2.959 (2)	110.5 (17)

268 Symmetry codes: (iv) -x, y+1/2, -z+1/2; (v) -x+1, y+1/2, -z+1/2.

269 **Table 6**

270 Selected bond lengths (Å) for (III)

271	K1—O4 ⁱ	2.729 (3)	K2—O3 ⁱⁱⁱ	2.759 (3)
272	K1—O3W	2.771 (3)	K2—O4W	2.820 (4)

273	K1—O1W ⁱⁱ	2.812 (5)	K2—O3W	2.871 (3)
274	K1—O2W	2.824 (4)	K2—O1	2.883 (3)
275	K1—N7	2.932 (4)	K2—N6 ⁱⁱⁱ	2.899 (4)
276	K1—O1W	2.975 (5)	K2—O4	2.947 (3)
277	K1—O3W ⁱ	3.004 (3)	K2—O3	3.023 (3)
278	K1—N5	3.129 (4)	K2—N1	3.153 (3)

279 Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1.

280 **Table 7**

281 Hydrogen-bond geometry (Å, °) for (III)

282	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
283	O1W—H1W····O1 ⁱ	0.880 (10)	1.93 (2)	2.799 (5)	167 (8)
284	O1W—H2W…O4W ⁱ	0.877 (10)	2.27 (4)	3.070 (6)	151 (6)
285	O2W—H3W···O3 ⁱⁱⁱ	0.878 (10)	2.071 (19)	2.933 (5)	167 (6)
286	O2W—H4W…N2	0.880 (10)	1.965 (17)	2.828 (5)	167 (6)
287	O3W—H5W…N1	0.874 (10)	2.022 (18)	2.872 (5)	164 (5)
288	O3W—H6W…N5 ⁱ	0.873 (10)	1.979 (14)	2.835 (5)	166 (4)
289	O4W—H7W···O2W ^{iv}	0.878 (10)	2.052 (17)	2.919 (6)	169 (7)
290	O4W—H8W···O4W ^v	0.879 (10)	2.05 (2)	2.920 (8)	168 (9)
291	N4—H1N…N4 ^{vi}	0.87 (7)	2.50 (6)	3.054 (9)	122 (5)
292	N4—H2N···O2 ^{vii}	0.93 (7)	2.57 (7)	3.431 (7)	153 (5)
293	N8—H3N···O2 ^{viii}	0.87 (5)	2.38 (5)	3.046 (5)	134 (4)
294	N8—H3N····N3 ^{viii}	0.87 (5)	2.61 (5)	3.283 (6)	135 (4)

295 Symmetry codes: (i) -x, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x-1, y, z; (v) -x-1, -y+2, -z+1; (vi) -x-1, -y, -z; (vii) x, y-1, z; (viii) x, y, z+1.

296 Table 8

297 Selected geometric parameters (Å, °) for (IV)

298	Na1—O1W	2.3184 (13)	Na1—O2W	2.4764 (14)
299	Na1—O4W	2.3211 (15)	O3—C12	1.2626 (18)
300	Na1—O3	2.4042 (12)	N5—N6	1.3031 (18)
301	Na1—O7 ⁱ	2.4237 (12)	N5-C11	1.3322 (19)
302	Na1—O3W	2.4592 (14)	C11—C12	1.467 (2)
303				
304	O1W—Na1—O4W	169.11 (5)	O3—Na1—O3W	166.97 (5)
305	O1W—Na1—O3	90.96 (4)	O7 ⁱ —Na1—O3W	80.17 (5)
306	O4W—Na1—O3	98.12 (5)	O1W—Na1—O2W	81.14 (5)
307	O1W—Na1—O7 ⁱ	85.13 (4)	O4W—Na1—O2W	91.10 (6)
308	O4W—Na1—O7 ⁱ	101.30 (5)	O3—Na1—O2W	101.64 (5)
309	O3—Na1—O7 ⁱ	86.81 (4)	O7 ⁱ —Na1—O2W	163.94 (5)
310	O1W—Na1—O3W	87.73 (5)	O3W—Na1—O2W	90.97 (5)
311	O4W—Na1—O3W	84.75 (6)		

312 Symmetry code: (i) -x, -y+1, -z.

- 313 Table 9
- 314 Hydrogen-bond geometry (Å, °) for (IV)

		ע ת	TT 4		
315		<i>D</i> —Н	п…А	D····A	<i>D</i> —H··· <i>A</i>
316	O1W—H1W···O9 ⁱⁱ	0.88 (3)	1.99 (3)	2.8404 (16)	163 (2)
317	O1W—H2W···O1 ⁱⁱ	0.91 (3)	2.24 (3)	2.8830 (17)	127 (2)
318	O1W—H2W····N2 ⁱⁱ	0.91 (3)	2.07 (3)	2.8972 (18)	150 (2)
319	O2W—H3W···O9 ⁱⁱ	0.86 (3)	2.05 (3)	2.8852 (18)	163 (2)
320	O2W—H4W…O6 ⁱⁱⁱ	0.92 (4)	1.98 (4)	2.8932 (18)	174 (3)
321	O3W—H5W···O5 ⁱⁱⁱ	0.86 (3)	1.98 (3)	2.8320 (18)	178 (3)
322	O3W—H6W···O5W	0.83 (4)	2.18 (3)	2.736 (3)	124 (3)
323	O3W—H6W···O6W ^{iv}	0.83 (4)	2.09 (4)	2.853 (3)	153 (3)
324	O3W—H6W···O7W ^{iv}	0.83 (4)	2.06 (4)	2.799 (3)	148 (3)
325	O4W—H7W···O5 ⁱ	0.879 (10)	2.242 (11)	3.1093 (19)	169 (2)
326	O4W—H8W····O4W ^{iv}	0.883 (10)	2.00 (2)	2.825 (3)	154 (4)
327	O4W—H8W···O6W	0.883 (10)	2.41 (5)	2.871 (3)	113 (4)
328	O4W—H14W···O7W ^{iv}	0.886 (10)	2.16 (3)	2.902 (3)	140 (4)
329	O5W—H9W···O4 ^v	0.883 (10)	1.845 (13)	2.710 (3)	166 (4)
330	O5W—H10W···O8 ⁱ	0.885 (10)	1.986 (14)	2.843 (3)	163 (3)
331	O6W—H11W···O2 ^{vi}	0.886 (10)	2.22 (2)	2.893 (3)	132 (2)
332	O6W—H12W···O2W	0.881 (10)	1.850 (11)	2.731 (3)	178 (5)
333	O7W—H13W····O8 ⁱⁱⁱ	0.875 (10)	1.91 (2)	2.699 (3)	150 (3)
334	N6—H1N…O3	0.92 (2)	1.75 (2)	2.5342 (16)	142 (2)
335	N4—H2N···O3W ^{vii}	0.92 (3)	1.93 (3)	2.839 (2)	171 (2)
336	N4—H3N…O6	0.91 (2)	1.92 (2)	2.8245 (18)	170 (2)
337	N4—H4N…O1 ^{viii}	0.91 (2)	2.01 (2)	2.8784 (18)	159.6 (19)
338	N4—H4N…O1W ^{vii}	0.91 (2)	2.50 (2)	2.9386 (19)	110.5 (16)
339	N3—H5N···O2 ^{vi}	0.84 (2)	2.57 (2)	3.0827 (17)	120.3 (18)
340	N3—H5N····N1 ^{vi}	0.84 (2)	2.02 (2)	2.8655 (19)	177 (2)

342 Table 10

343 Hydrogen-bond geometry (Å, °) for (V)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N4—H1N····O2 ⁱ	0.86 (2)	2.04 (2)	2.895 (2)	168 (2)
N4—H2N···O1 ⁱⁱ	0.87 (2)	2.03 (2)	2.887 (2)	174 (2)
N5—H3N····N2 ⁱⁱⁱ	0.92 (2)	1.85 (2)	2.758 (2)	174 (2)
N6—H4N····N4 ^{iv}	0.87 (3)	2.39 (3)	3.085 (2)	137 (2)
N6—H5N…N1 ⁱⁱⁱ	0.92 (3)	2.00 (3)	2.918 (2)	173 (3)
	$ D - H \cdots A N4 - H1N \cdots O2^{i} N4 - H2N \cdots O1^{ii} N5 - H3N \cdots N2^{iii} N6 - H4N \cdots N4^{iv} N6 - H5N \cdots N1^{iii} $	$\begin{array}{c ccccc} \hline D & - H & D & - H \\ \hline N4 & - H1N & O2^i & 0.86 (2) \\ N4 & - H2N & O1^{ii} & 0.87 (2) \\ N5 & - H3N & N2^{iii} & 0.92 (2) \\ N6 & - H4N & N4^{iv} & 0.87 (3) \\ N6 & - H5N & N1^{iii} & 0.92 (3) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

350 Symmetry codes: (i) x-1, -y+3/2, z-1/2; (ii) x-1, y, z; (iii) -x+2, -y+2, -z; (iv) -x+1, -y+2, -z.

- 351 Table 11
- 352 Hydrogen-bond geometry (Å, °) for (VI)

353	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
354	N4—H1N···O1W ⁱ	0.89 (2)	2.34 (2)	3.173 (2)	156 (2)
355	N4—H2N…O1W ⁱⁱ	0.83 (2)	2.58 (2)	3.293 (2)	144.1 (19)
356	N5—H3N···O3 ⁱⁱⁱ	0.86 (2)	2.01 (2)	2.7762 (18)	147.2 (18)
357	N5—H4N···O2 ⁱⁱ	0.90 (2)	1.99 (2)	2.8488 (18)	159 (2)
358	N5—H4N…N3 ⁱⁱ	0.90 (2)	2.51 (2)	3.038 (2)	118.1 (17)
359	N5—H5N···O1 ^{iv}	0.93 (2)	2.44 (2)	3.1006 (18)	128.4 (17)
360	N5—H5N…N1 ^{iv}	0.93 (2)	2.02 (2)	2.933 (2)	167.3 (19)
361	O3—H1H···N2 ^v	0.84 (3)	1.90 (3)	2.7399 (19)	177 (2)
362	O1W—H1W···O2	0.97 (3)	1.94 (3)	2.9039 (17)	174 (3)
363	O1W—H2W···O1 ^{vi}	0.86 (3)	2.07 (3)	2.8997 (18)	163 (2)
 355 356 357 358 359 360 361 362 363 	N4—112N**O1W N5—H3N**O2 ⁱⁱ N5—H4N**O2 ⁱⁱ N5—H4N**N3 ⁱⁱ N5—H5N**O1 ^{iv} N5—H5N**N1 ^{iv} O3—H1H***N2 ^v O1W—H1W***O2 O1W—H2W***O1 ^{vi}	0.83 (2) 0.86 (2) 0.90 (2) 0.90 (2) 0.93 (2) 0.93 (2) 0.84 (3) 0.97 (3) 0.86 (3)	2.58 (2) 2.01 (2) 1.99 (2) 2.51 (2) 2.44 (2) 2.02 (2) 1.90 (3) 1.94 (3) 2.07 (3)	2.7762 (18) 2.8488 (18) 3.038 (2) 3.1006 (18) 2.933 (2) 2.7399 (19) 2.9039 (17) 2.8997 (18)	144.1 (19) 147.2 (18) 159 (2) 118.1 (17) 128.4 (17) 167.3 (19) 177 (2) 174 (3) 163 (2)

364 Symmetry codes: (i) -x, -y, -z+1; (ii) x, -y-1/2, z-1/2; (iii) -x+1, -y-1, -z+1; (iv) x, y-1, z; (v) -x+1, -y, -z+1; (vi) x, -y+1/2, z+1/2.

365 **Table 12**

Coordination modes of the SD anion, showing which atoms form bonds to alkali metal cations.

(1) (I	I)	(777)	
	(1	1)	(111)	(III)
L	i N	a	K L1	K L2
onor atom				
1 y	es ye	es	yes	yes
2 n	o no	0	no	yes
sulfamide n	o ye	es	yes	yes
ring 1 y	es ye	es	no	yes
ring 2 n	o ye	es	no	yes
amine n	o ye	es	no	no
	L vonor atom 1 ye 2 nd 1 sulfamide nd 1 ring 1 ye 1 ring 2 nd 1 amine nd	Li N Vonor atom 1 yes ye 2 no no 1 sulfamide no ye 1 ring 1 yes ye 1 ring 2 no ye 1 amine no ye	Li Na Vonor atom 1 yes yes 2 no no 1 sulfamide no yes 1 ring 1 yes yes 1 ring 2 no yes 1 amine no yes	Li Na KL1 Vonor atom 1 yes yes yes yes 2 no no no 1 sulfamide no yes yes 1 ring 1 yes yes no 1 ring 2 no yes no 1 amine no yes no

377 Acknowledgements

- 380 References
- 381 Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl.
 Cryst. 27, 435.
- 384 Baenziger, N. C. & Struss, A. W. (1976). *Inorg. Chem.* 15, 1807–1809.
- 385 Buist, A. R., Dennany, L., Kennedy, A. R., Manzie, C., McPhie, K. & Walker, B. (2014). Acta Cryst. C70, 900-907.
- 386 Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
- 387 Elacqua, E., Bucar, D.-K., Henry, R. F., Zhang, G. G. Z. & MacGillivray, L. R. (2013). Cryst. Growth Des. 13, 393–403.
- 388 Fisher, N. M., Marsh, E. & Lazova, R. (2003). J. Am. Acad. Dermatol. 49, 730–732.
- 389 Ghedini, E., Pizzolitto, C., Albore, G., Menegazzo, F., Signoretto, M., Operti, L. & Cerrato, G. (2017). J. Sol-Gel Sci.
- 390 *Tech.* **83**, 618–626.

We thank the National Crystallography Service, University of Southampton, for data collection on (IV) (Coles & Gale, 2012).

- 391 Heren, Z., Pasaoglu, H. & Kastas, G. (2006). Acta Cryst. E62, 03437–03439.
- Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton
 Trans., 2199-2205.
- 394 Kennedy, A. R., Kirkhouse, J. B. & Whyte, L. (2006). Inorg. Chem. 45, 2965-2971.
- 395 Kennedy, A. R., McKellar, S. C. & Okoth, M. O. (2010). Acta Cryst. E66, m1330-m1331.
- 396 Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064–3069.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez Monge, L., Taylor, R.,
 van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* 41, 466–470.
- 399 Mohseni, M., Shamloo, A., Aghababaei, Z., Vossoughi, M. & Moravvej, H. (2016). Artificial Organs 40, 765–773.
- 400 Ojala, W. H., Gleason, W. B., Richardson, T. I. & Lovrien, R. E. (1994a). Acta Cryst. C50, 1615-1620.
- Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994b). Acta
 Cryst. B50, 684-694.
- 403 Pan, F., Wang, R. & Englert, U. (2012). Inorg. Chem. 51, 769–771.
- 404 Pan, F., Wang, R. & Englert, U. (2013). CrystEngComm, 15, 1164–1172.
- 405 Preskey, D. & Kayes, J. B. (1976). J. Clinical Pharm. 1, 39-48.
- 406 Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- 407 Shi, W.-B., Cui, A.-L. & Kou, H.-Z. (2015). Polyhedron 99, 252–259.
- Sun, J., Xie, C., Zhang, X., Bao, Y., Hou, B., Wang, Z., Gong, J., Hao, H., Wang, Y., Wang, J. & Yin, Q. (2016). Org.
 Process Res. Dev. 20, 780–785.
- Stahl, P. H. & Wermuth, C. G. (2008). Eds. *Handbook of Pharmaceutical Salts: Properties, Selection and Use*. VHCA:
 Zurich.
- 412 Tommasino, J.-B., Renaud, F. N. R., Luneau, D. & Pilet, G. (2011). Polyhedron 30, 1663–1670.
- 413 Yuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J.
- 414 Chem. Soc. Dalton Trans., 774–??.

checkCIF/PLATON results for paper uk3153

checkCIF/PLATON results Ellipsoid plot

checkCIF/PLATON results

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

	Calculated	Reported	
Volume	1323.03(9)	1323.03(9)	
Space group	Сс	Сс	
Hall group	C -2yc	C -2yc	
Moiety formula	C10 H13 Li N4 O4 S	?	
Sum formula	C10 H13 Li N4 O4 S	C10 H13 Li N4 O4 S	
Mr	292.24	292.24	
Dx,g cm-3	1.467	1.467	
Z	4	4	
Mu (mm-1)	0.262	0.262	
F000	608.0	608.0	
F000′	608.76		
h,k,lmax	15,16,12	15,15,12	
Nref	3512[1760]	2246	
Tmin,Tmax	0.939,0.954	0.949,1.000	
Tmin'	0.924		
Correction method= # R	eported T Limits: Tmin=0	.949 Tmax=1.000	AbsCorr = MULTI-SCAN
Data completeness= 1.2	8/0.64		
Theta(max) = 28.976			
R(reflections) = 0.0262	(2184) wR2(reflections) =	0.0655(2246)	
S = 1.036 Npar= 207			

🔍 Alert level B

PLAT915_ALERT_3_B No Flack x Check Done: Low Friedel Pair Coverage 34 %

Alert level C

PLAT048 ALERT 1 C MoietyFormula Not Given	(or Incomp	plete)	Please Check
PLAT420_ALERT_2_C D-H Without Acceptor	N4	H2N	Please Check

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	6 Note
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	2 Report
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF #	18 Check
01 -S1 -LI1 1.555 1.555 1.555	32.38 Deg.
PLAT792_ALERT_1_G Model has Chirality at S1 (Polar SPGR)	R Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints	8 Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	95 Note
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	10 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

Datablock: II

Bond precision: C-C = 0.0030 A Wavelength=0.71073

	Calculated	Reported	
17 -]			
	1140.0(5) D. 21/-	1140.0(5)	
space group	P 21/C	P 21/C	
Hall group	-P Zybc	-P ZYDC	
Molety formula	C10 H9 N4 Na 02 S	? 210 H0 N4 N4 00 0	
Sum formula	CIU H9 N4 Na O2 S	CIU H9 N4 Na O2 S	
Mr	272.26	272.26	
Dx,g cm-3	1.586	1.586	
Z	4	4	
Mu (mm-1)	0.320	0.320	
F000	560.0	560.0	
F000′	560.80		
h,k,lmax	8,14,25	7,14,24	
Nref	3168	2786	
Tmin,Tmax	0.955,0.975	0.961,1.000	
Tmin'	0.894		
Correction method=	# Reported T Limits: Tm	in=0.961 Tmax=1.00	0 AbsCorr = MULTI-SCAN
Data completeness=	0.879		
Theta(max) = 29.486	5		
R(reflections) = 0	0376(2351) wP2(reflection	(15) = 0.0883(2786)	

Alert level C		
PLAT048 ALERT 1 C MoietyFormula Not Given (or Incomplete)	Please Check	
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # C10 H9 N4 Na O2 S	1 Note	
PLAT906 ALERT 3 C Large K Value in the Analysis of Variance	2.164 Check	
Alert level G		
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension	3 Info	
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) .	3 Info 1.33 Ratio	
<pre>● Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . PLAT793 ALERT 4 G Model has Chirality at S1 (Centro SPGR)</pre>	3 Info 1.33 Ratio S Verify	
<pre>Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . PLAT793_ALERT_4_G Model has Chirality at S1 (Centro SPGR) PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).</pre>	3 Info 1.33 Ratio S Verify 3 Note	
<pre>Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . PLAT793_ALERT_4_G Model has Chirality at S1 (Centro SPGR) PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600</pre>	3 Info 1.33 Ratio S Verify 3 Note 352 Note	

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

- 1 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 2 ALERT type 3 Indicator that the structure quality may be low
- 4 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

Datablock: III

Bond precision: C-C = 0.0064 A Wavelength=1.54180 Cell: a=8.8503(7) b=9.6385(4) c=15.9734(7) alpha=92.350(4) beta=95.186(4) gamma=94.209(4) Temperature: 123 K

Colevlated

Calculated	Keporceu	
1351.79(14)	1351.79(13)	
P -1	P -1	
-P 1	-P 1	
C20 H26 K2 N8 O8 S2	?	
C20 H26 K2 N8 O8 S2	C10 H13 K N4 O4 S	
648.81	324.40	
1.594	1.594	
2	4	
5.085	5.085	
672.0	672.0	
676.80		
11,12,19	10,11,19	
5456	5357	
0.460,0.601	0.601,1.000	
0.209		
eported T Limits: Tmin=0.	601 Tmax=1.000	AbsCorr = MULTI-SCAN
32		
(3951) wR2(reflections) =	0.1573(5357)	
	<pre>Calculated 1351.79(14) P -1 -P 1 C20 H26 K2 N8 08 S2 C20 H26 K2 N8 08 S2 648.81 1.594 2 5.085 672.0 676.80 11,12,19 5456 0.460,0.601 0.209 eported T Limits: Tmin=0. 32 (3951) wR2(reflections)=</pre>	Calculated Kepited 1351.79(14) 1351.79(13) P -1 P -1 -P 1 -P 1 C20 H26 K2 N8 08 S2 ? C20 H26 K2 N8 08 S2 C10 H13 K N4 04 S 648.81 324.40 1.594 1.594 2 4 5.085 5.085 672.0 672.0 676.80 11,12,19 11,12,19 10,11,19 5456 5357 0.460,0.601 0.601,1.000 0.209 Calculated Calculated Tmax=1.000 32 3951) wR2(reflections) = 0.1573(5357)

Depented

🎈 Alert level B				
PLAT420_ALERT_2_B D-H Without Acceptor	O4W	H9W	Please Check	

Alert level C

PLAT048_ALERT_1_C MoietyFormula Not Given (or Incomplete)	Please	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	Kl	Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00644	Ang.
PLAT420_ALERT_2_C D-H Without Acceptor N8H4N	Please	Check
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	6.059	Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	19	Report
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers	1	Check
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density.	0	Info

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal ..(Note) PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 13 Note 2 Info 0.50 Check 0.004 Degree 3 Report

```
PLAT300_ALERT_4_G Atom Site Occupancy of H8WConstrained at0.5 CheckPLAT300_ALERT_4_G Atom Site Occupancy of H9WConstrained at0.5 CheckPLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd)1.29 RatioPLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K1--K24.24 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K1--K14.49 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K1--K24.62 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K1--K24.62 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K2--K14.24 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K2--K14.24 Ang.PLAT774_ALERT_1_G Suspect X-Y Bond in CIF: K2--K14.24 Ang.PLAT793_ALERT_4_G Model has Chirality at S1(Centro SPGR)R VerifyPLAT860_ALERT_3_G Number of Least-Squares Restraints14 NotePLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).1 NotePLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=0.60075 Note
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       R Verify
14 Note
```

0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 16 ALERT level G = General information/check it is not something unexpected 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Datablock: IV

```
Bond precision:
                      C-C = 0.0020 A Wavelength=1.54184
Cell: a=12.7688(1) b=16.9040(1) c=15.7411(1)
       alpha=90 beta=107.609(1) gamma=90
Temperature: 100 K
                             Calculated
                                                             Reported
                              _ _ _ _ _ _ _ _ _ _ _ _ _
                                                               _ _ _ _ _ _ _ _
                            3238.42(4)
                                                              3238.42(4)
Volume

        Volume
        Distriction

        Space group
        P 21/c

        Hall group
        -P 2ybc

        Moiety formula
        C32 H36 N4 Na2 O22 S4 ?

        Sum formula
        C52 H64 N12 Na2 O29 S6

        C26 H32 N6 Na O14.50 S3

                            1559.49
Mr
                                                              779.74
                           1.599
                                                              1.599
Dx,g cm-3
                      2
2.946
1620.0
Z
                                                               4
Mu (mm-1)
                                                              2.946
F000
                                                             1620.0
F000′
                         1629.77
15,20,18
5935
h,k,lmax
                                                             15,20,18
Nref
                                                              5913
                    0.754,0.889
Tmin,Tmax
                                                              0.615,1.000
Tmin'
                            0.702
Correction method= # Reported T Limits: Tmin=0.615
                                                                                  Tmax=1.000 AbsCorr = MULTI-SCAN
Data completeness= 0.996
Theta(max) = 68.245
R(reflections) = 0.0280( 5686) wR2(reflections) = 0.0745( 5913)
S = 1.048 Npar= 537
```

🔍 Alert level B PLAT416 ALERT 2 B Short Intra D-H..H-D H11W ..H13W

1.38 Ang.

🤪 Alert level C

PLAT048 ALERT 1 C MoietyFormula Not Given (or Incomplete) Please Check

PLAT222	ALERT	_3_	С	Non-Solv	7.	Resd	1	H U	iso(max) /	/Uiso(min)	Range	4.2	Ratio
PLAT911	ALERT	3	С	Missing	FCF	Refl	H	Between	Thmin	&	STh/L=	0.600	19	Report

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	12	Note
PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor	0.50	Check
PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing	0.00010	Ang.
PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing	0.00010	Ang.
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	3	Report
PLAT300_ALERT_4_G Atom Site Occupancy of H8W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of H14W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of O6W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of 07W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of H12W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of H13W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of O5W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of H9W Constrained at	0.5	Check
PLAT300_ALERT_4_G Atom Site Occupancy of H10W Constrained at	0.5	Check
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3)	100%	Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 4)	100%	Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms in Resd 4	1.50	Check
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #	3	Note
H2 O		
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #	4	Note
H2 O		
PLAT860_ALERT_3_G Number of Least-Squares Restraints	13	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	3	Note
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File	2	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	18	Info

ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check

Datablock: V

	Calculated	Reported
Volume	1573.27(9)	1573.27(9)
Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C10 H9 N4 O2 S, C5 H7 N2	?
Sum formula	C15 H16 N6 O2 S	C15 H16 N6 O2 S
Mr	344.40	344.40
Dx,g cm-3	1.454	1.454
Z	4	4
Mu (mm-1)	0.228	0.228
F000	720.0	720.0
F000'	720.74	
h,k,lmax	11,25,15	11,25,15
Nref	4183	4082
Tmin,Tmax	0.921,0.995	0.527,1.000

Tmin' 0.913

Correction method= # Reported T Limits: Tmin=0.527 Data completeness= 0.976 Theta(max) = 28.994 R(reflections) = 0.0445(3225) wR2(reflections) = 0.1139(4082) S = 1.040 Npar= 237

Alert level C

PLAT048_ALERT_1_C MoietyFormula Not Given (or Incomplete)Please CheckPLAT906_ALERT_3_C Large K Value in the Analysis of Variance2.533 Check

Alert level G

 PLAT128_ALERT_4_G Alternate Setting for Input Space Group P21/c
 P21/n Note

 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
 2 Note

 C5
 H7 N2

 PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
 4 Note

 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
 98 Note

 PLAT978_ALERT_2 G Number C-C Bonds with Positive Residual Density.
 11 Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

Bond precision: C-C = 0.0020 A Wavelength=0.71073

Datablock: VI

Cell: a=12.7755(4)	b=9.8979(4) c=11.5366(4)	
alpha=90 beta	=93.508(3) gamma=90	
Temperature: 123 K		
	Calculated	Reported
Volume	1456.08(9)	1456.08(9)
Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C10 H9 N4 O2 S, C2 H8 ?	
Sum formula	C12 H19 N5 O4 S	C12 H19 N5 O4 S
Mr	329.38	329.38
Dx,g cm-3	1.503	1.503
Z	4	4
Mu (mm-1)	0.250	0.250
F000	696.0	696.0
F000′	696.79	
h,k,lmax	17,13,16	17,12,15
Nref	4052	3571
Tmin,Tmax	0.939,0.970	0.904,1.000
Tmin'	0.939	

Correction method= # Reported T Limits: Tmin=0.904 Data completeness= 0.881 Theta(max)= 29.531 Tmax=1.000 AbsCorr = MULTI-SCAN

Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given (or Incomplete) Please Check Alert level G PLAT790 ALERT 4 G Centre of Gravity not Within Unit Cell: Resd. # 2 Note C2 H8 N O PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min). 4 Note PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600 432 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 9 Info 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected

ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 ALERT type 2 Indicator that the structure model may be wrong or deficient
 ALERT type 3 Indicator that the structure quality may be low
 ALERT type 4 Improvement, methodology, query or suggestion
 ALERT type 5 Informative message, check

database duplication summary

Datablock: I

- Chemical name =
- R factor = 0.026
- Space group =
- Formula = C10 H13 Li N4 O4 S
- a=11.5095 b=12.0788 c=9.5184
- alpha=90 beta=91.063 gamma=90

Datablock: II

- Chemical name =
- R factor = 0.038
- Space group =
- Formula = C10 H9 N4 Na O2 S
- a=5.901 b=10.534 c=18.389
- alpha=90 beta=94.216 gamma=90

Datablock: III

- Chemical name =
- R factor = 0.060

- Space group =
- Formula = C10 H13 K N4 O4 S
- a=8.8503 b=9.6385 c=15.9734
- alpha=92.35 beta=95.186 gamma=94.209

Datablock: IV

- Chemical name =
- R factor = 0.028
- Space group =
- Formula = C26 H32 N6 Na O14.50 S3
- a=12.7688 b=16.904 c=15.7411
- alpha=90 beta=107.609 gamma=90

Datablock: V

- Chemical name =
- R factor = 0.045
- Space group =
- Formula = C15 H16 N6 O2 S
- a=8.5796 b=19.0371 c=11.2512
- alpha=90 beta=121.116 gamma=90

Datablock: VI

- Chemical name =
- R factor = 0.037
- Space group =
- Formula = C12 H19 N5 O4 S
- a=12.7755 b=9.8979 c=11.5366
- alpha=90 beta=93.508 gamma=90

No duplication found.

reference checking results

The following references were not checked in detail as they were not recognized as journal references

Agilent (2014). CrysalisPro. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.

Stahl, P. H. & Wermuth, C. G. (2008). Eds. *Handbook of Pharmaceutical Salts: Properties, Selection and Use*. VHCA: Zurich.

The following references may be incorrectly formatted

Ghedini, E., Pizzolitto, C., Albore, G., Menegazzo, F., Signoretto, M., Operti, L. & Cerrato, G. (2017). *J. Sol-Gel Sci. Tech.* **83**, 618--626. [*Unrecognized journal title*.]

Results of online verification of references to IUCr journals

More than one match found for Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* **27**, 435--436. #ATL:SIRPOW.92 - a program for automatic solution of crystal structures by direct methods optimized for powder data. [CNOR:wi0150]# - please check.

All references appear to be cited unambiguously

Citation comments

1 date found in data_I _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2010

1 date found in data_II _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2010

1 date found in data_III _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2014

1 date found in data_IV _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2017

1 date found in data_V _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2010

1 date found in data_VI _exptl_absorpt_process_details that could be part of a citation but not found in reference list: 2010

Datablock I - ellipsoid plot

Datablock IV - ellipsoid plot

¹ supporting information

² Salt forms of sulfadiazine with alkali metal and organic cations.

³ Gemma Campbell, Rebecca Fisher, Alan R. Kennedy,* Nathan L. C. King and Rebecca Spiteri

- 4 Computing details
- 5 For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis
- 6 PRO. Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I), (III), (IV); SHELXS (Sheldrick, 2015) for
- 7 (II), (V), (VI). For all structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular
- 8 graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014.

9 **(I)**

- 10 Crystal data
- $11 C_{10}H_{13}LiN_4O_4S$
- 12 $M_r = 292.24$
- 13 Monoclinic, Cc
- $_{14}$ a = 11.5095 (4) Å
- 15 b = 12.0788 (5) Å
- $_{16}$ c = 9.5184 (4) Å
- $\beta = 91.063 (3)^{\circ}$
- V = 1323.03 (9) Å³
- 19 Z = 4
- 20 Data collection
- 21 Oxford Diffraction Xcalibur E diffractometer
- 22 Radiation source: tube
- $_{23}$ ω scans

24 Refinement

- 25 Refinement on F^2
- 26 Least-squares matrix: full
- 27 $R[F^2 > 2\sigma(F^2)] = 0.026$
- $28 \quad wR(F^2) = 0.066$
- 29 *S* = 1.04

F(000) = 608 $D_x = 1.467 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2629 reflections $\theta = 3.2-29.8^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 123 KBlock, colourless $0.30 \times 0.20 \times 0.18 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\rm min} = 0.949, T_{\rm max} = 1.000$ 3390 measured reflections 2246 independent reflections 2184 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$ $\theta_{\text{max}} = 29.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -15 \rightarrow 13$ $k = -15 \rightarrow 15$ $l = -12 \rightarrow 10$

2246 reflections 207 parameters 8 restraints Hydrogen site location: mixed

- 30 H atoms treated by a mixture of independent and constrained refinement
- 31 $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 0.3087P]$ where $P = (F_o^2 + 2F_c^2)/3$
- 32 $(\Delta/\sigma)_{\rm max} < 0.001$
- $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$$

35 Special details

Extinction correction: *SHELXL2014* (Sheldrick, 2015), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0054 (9) Absolute structure: Refined as an inversion twin. Absolute structure parameter: -0.01 (8)

- **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
- **Refinement**. Refined as a 2-component inversion twin.

38 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

39		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
40	Li1	0.8416 (4)	0.2755 (4)	0.4134 (5)	0.0198 (8)
41	S1	0.75432 (4)	0.33089 (4)	0.70030 (5)	0.01208 (13)
42	01	0.81653 (14)	0.36761 (14)	0.57624 (17)	0.0157 (3)
43	O2	0.72513 (14)	0.42112 (14)	0.79429 (18)	0.0175 (4)
44	O1W	0.83115 (15)	0.36603 (15)	0.24923 (19)	0.0211 (4)
45	O2W	0.97330 (16)	0.19039 (18)	0.3764 (2)	0.0314 (5)
46	N1	0.63739 (15)	0.26680 (16)	0.6691 (2)	0.0129 (4)
47	N2	0.71240 (17)	0.16691 (16)	0.4758 (2)	0.0154 (4)
48	N3	0.52506 (17)	0.13140 (17)	0.5695 (2)	0.0145 (4)
49	N4	1.05266 (19)	0.00920 (18)	1.0096 (2)	0.0187 (4)
50	C1	0.62734 (19)	0.18727 (19)	0.5688 (2)	0.0121 (4)
51	C2	0.6930 (2)	0.0854 (2)	0.3827 (3)	0.0206 (5)
52	H2	0.7523	0.0684	0.3180	0.025*
53	C3	0.5921 (2)	0.0254 (2)	0.3763 (3)	0.0231 (5)
54	H3	0.5798	-0.0317	0.3091	0.028*
55	C4	0.5093 (2)	0.0531 (2)	0.4735 (3)	0.0184 (5)
56	H4	0.4376	0.0141	0.4714	0.022*
57	C5	0.84694 (19)	0.23972 (19)	0.7933 (2)	0.0137 (4)
58	C6	0.8089 (2)	0.1949 (2)	0.9188 (3)	0.0189 (5)
59	H6	0.7352	0.2151	0.9541	0.023*
60	C7	0.8785 (2)	0.1211 (2)	0.9918 (2)	0.0198 (5)
61	H7	0.8523	0.0904	1.0775	0.024*
62	C8	0.9871 (2)	0.09088 (19)	0.9410 (2)	0.0161 (5)
63	C9	1.0257 (2)	0.1391 (2)	0.8169 (2)	0.0157 (5)
64	H9	1.1005	0.1211	0.7830	0.019*
65	C10	0.95556 (18)	0.21289 (19)	0.7430 (2)	0.0154 (5)
66	H10	0.9819	0.2450	0.6582	0.018*
67	H1W	0.815 (3)	0.4368 (12)	0.251 (4)	0.050 (11)*
68	H2W	0.890 (2)	0.365 (3)	0.194 (3)	0.055 (12)*
69	H3W	1.017 (3)	0.202 (3)	0.305 (3)	0.063 (12)*
70	H4W	1.002 (3)	0.131 (2)	0.413 (4)	0.061 (12)*

71 H1N	1.122 (3)	0.003 (3)	0.985 (3)	0.025 (8)*
72 H2N	1.044 (2)	0.012 (2)	1.107 (3)	0.017 (7)*

73 Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.019 (2)	0.019 (2)	0.022 (2)	0.0013 (16)	0.0043 (15)	0.0013 (17)
S1	0.0108 (2)	0.0113 (2)	0.0143 (2)	-0.0013 (2)	0.00227 (16)	-0.0006 (2)
01	0.0157 (8)	0.0145 (8)	0.0171 (8)	-0.0029 (6)	0.0045 (6)	0.0013 (7)
O2	0.0178 (8)	0.0133 (8)	0.0213 (9)	0.0001 (6)	0.0032 (6)	-0.0042 (7)
O1W	0.0208 (9)	0.0181 (9)	0.0246 (9)	0.0048 (7)	0.0098 (7)	0.0059 (8)
O2W	0.0274 (11)	0.0332 (11)	0.0345 (12)	0.0151 (8)	0.0209 (9)	0.0194 (9)
N1	0.0100 (9)	0.0144 (9)	0.0145 (9)	-0.0011 (7)	0.0020 (6)	-0.0011 (8)
N2	0.0140 (10)	0.0165 (10)	0.0160 (10)	0.0001 (8)	0.0049 (7)	-0.0007 (8)
N3	0.0135 (9)	0.0149 (10)	0.0149 (9)	-0.0035 (8)	0.0013 (7)	0.0015 (8)
N4	0.0194 (11)	0.0187 (11)	0.0180 (11)	0.0018 (8)	-0.0032 (8)	-0.0010 (8)
C1	0.0126 (10)	0.0117 (10)	0.0120 (11)	0.0003 (8)	0.0004 (7)	0.0030 (8)
C2	0.0230 (12)	0.0219 (12)	0.0172 (12)	0.0010 (10)	0.0071 (9)	-0.0048 (10)
C3	0.0262 (13)	0.0218 (12)	0.0214 (13)	-0.0044 (10)	0.0025 (9)	-0.0108 (11)
C4	0.0171 (11)	0.0182 (12)	0.0198 (12)	-0.0042 (9)	-0.0005 (8)	0.0008 (10)
C5	0.0127 (10)	0.0133 (11)	0.0150 (11)	-0.0018 (8)	0.0001 (8)	-0.0019 (9)
C6	0.0157 (11)	0.0212 (12)	0.0200 (13)	-0.0016 (10)	0.0029 (9)	0.0004 (10)
C7	0.0215 (12)	0.0208 (12)	0.0174 (12)	-0.0014 (10)	0.0049 (9)	0.0030 (10)
C8	0.0184 (11)	0.0142 (11)	0.0157 (12)	-0.0026 (9)	-0.0030 (8)	-0.0031 (9)
C9	0.0129 (11)	0.0176 (12)	0.0167 (11)	0.0018 (9)	0.0004 (8)	-0.0036 (9)
C10	0.0139 (11)	0.0177 (12)	0.0145 (11)	-0.0003 (9)	0.0027 (8)	0.0000 (9)

95 Geometric parameters (Å, °)

96	Li1—O2W	1.870 (4)	N4—C8	1.396 (3)
97	Li1—O1W	1.910 (5)	N4—H1N	0.84 (3)
98	Li1—O1	1.934 (5)	N4—H2N	0.93 (3)
99	Li1—N2	2.077 (5)	C2—C3	1.370 (4)
100	Li1—S1	3.002 (4)	С2—Н2	0.9500
101	S1—O2	1.4533 (17)	C3—C4	1.382 (3)
102	S1—O1	1.4612 (16)	С3—Н3	0.9500
103	S1—N1	1.5761 (19)	C4—H4	0.9500
104	S1—C5	1.760 (2)	C5—C10	1.385 (3)
105	O1W—H1W	0.875 (12)	C5—C6	1.390 (3)
106	O1W—H2W	0.867 (12)	C6—C7	1.378 (3)
107	O2W—H3W	0.865 (12)	С6—Н6	0.9500
108	O2W—H4W	0.863 (12)	C7—C8	1.398 (3)
109	N1C1	1.357 (3)	С7—Н7	0.9500
110	N2—C2	1.340 (3)	C8—C9	1.397 (3)
111	N2—C1	1.355 (3)	C9—C10	1.386 (3)
112	N3—C4	1.325 (3)	С9—Н9	0.9500
113	N3—C1	1.357 (3)	C10—H10	0.9500
114				

115	O2W—Li1—O1W	101.5 (2)	C8—N4—H2N	111.7 (17)
116	O2W—Li1—O1	126.9 (2)	H1N—N4—H2N	113 (3)
117	O1W—Li1—O1	108.5 (2)	N2—C1—N3	123.4 (2)
118	O2W—Li1—N2	107.1 (2)	N2—C1—N1	122.3 (2)
119	O1W—Li1—N2	124.1 (2)	N3—C1—N1	114.3 (2)
120	O1—Li1—N2	90.91 (18)	N2—C2—C3	123.3 (2)
121	O2W—Li1—S1	125.5 (2)	N2—C2—H2	118.4
122	O1W—Li1—S1	126.84 (19)	С3—С2—Н2	118.4
123	O1—Li1—S1	23.87 (8)	C2—C3—C4	115.9 (2)
124	N2—Li1—S1	68.13 (13)	С2—С3—Н3	122.0
125	O2—S1—O1	113.09 (10)	С4—С3—Н3	122.0
126	O2—S1—N1	106.15 (10)	N3—C4—C3	123.2 (2)
127	O1—S1—N1	115.22 (10)	N3—C4—H4	118.4
128	O2—S1—C5	107.73 (10)	C3—C4—H4	118.4
129	O1—S1—C5	107.16 (10)	C10—C5—C6	120.4 (2)
130	N1—S1—C5	107.14 (10)	C10—C5—S1	120.99 (18)
131	O2—S1—Li1	144.30 (11)	C6—C5—S1	118.58 (18)
132	O1—S1—Li1	32.38 (11)	C7—C6—C5	119.7 (2)
133	N1—S1—Li1	91.02 (11)	С7—С6—Н6	120.1
134	C5—S1—Li1	96.20 (11)	С5—С6—Н6	120.1
135	S1—O1—Li1	123.74 (16)	C6—C7—C8	120.7 (2)
136	Li1—O1W—H1W	124 (2)	С6—С7—Н7	119.7
137	Li1—O1W—H2W	117 (2)	С8—С7—Н7	119.7
138	H1W—O1W—H2W	101 (2)	N4—C8—C9	120.8 (2)
139	Li1—O2W—H3W	123 (3)	N4—C8—C7	120.1 (2)
140	Li1—O2W—H4W	134 (3)	C9—C8—C7	119.0 (2)
141	H3W—O2W—H4W	104 (2)	C10-C9-C8	120.4 (2)
142	C1—N1—S1	122.79 (16)	С10—С9—Н9	119.8
143	C2—N2—C1	116.9 (2)	С8—С9—Н9	119.8
144	C2—N2—Li1	112.7 (2)	C5-C10-C9	119.7 (2)
145	C1—N2—Li1	127.0 (2)	C5-C10-H10	120.1
146	C4—N3—C1	117.3 (2)	C9—C10—H10	120.1
147	C8—N4—H1N	116 (2)		
148				
149	O2—S1—O1—Li1	-167.45 (18)	C2-C3-C4-N3	-1.0 (4)
150	N1—S1—O1—Li1	-45.1 (2)	O2—S1—C5—C10	-123.58 (19)
151	C5—S1—O1—Li1	74.0 (2)	O1—S1—C5—C10	-1.6 (2)
152	O2—S1—N1—C1	169.98 (18)	N1-S1-C5-C10	122.58 (19)
153	O1—S1—N1—C1	44.0 (2)	Li1—S1—C5—C10	29.6 (2)
154	C5-S1-N1-C1	-75.1 (2)	O2—S1—C5—C6	56.4 (2)
155	Li1—S1—N1—C1	21.7 (2)	O1—S1—C5—C6	178.37 (18)
156	C2—N2—C1—N3	-1.4 (3)	N1—S1—C5—C6	-57.4 (2)
157	Li1—N2—C1—N3	156.1 (2)	Li1—S1—C5—C6	-150.4 (2)
158	C2—N2—C1—N1	179.3 (2)	C10—C5—C6—C7	-1.7 (4)
159	Li1—N2—C1—N1	-23.3 (4)	S1—C5—C6—C7	178.34 (19)
160	C4—N3—C1—N2	0.1 (3)	C5—C6—C7—C8	0.1 (4)
161	C4—N3—C1—N1	179.5 (2)	C6—C7—C8—N4	-174.7 (2)
162	S1—N1—C1—N2	-8.8 (3)	C6—C7—C8—C9	1.8 (4)

163	S1—N1—C1—N3	171.78 (16)	N4—C8—C9—C10	174.3 (2)
164	C1—N2—C2—C3	1.5 (4)	C7—C8—C9—C10	-2.1 (3)
165	Li1—N2—C2—C3	-159.1 (3)	C6—C5—C10—C9	1.4 (3)
166	N2-C2-C3-C4	-0.4 (4)	S1—C5—C10—C9	-178.66 (17)
167	C1—N3—C4—C3	1.2 (4)	C8—C9—C10—C5	0.5 (3)

168 Hydrogen-bond geometry (Å, °)

169	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
170	$O1W$ — $H1W$ ··· $O2^{i}$	0.88 (1)	2.05 (2)	2.881 (2)	158 (3)
171	O2W—H3W···N1 ⁱⁱ	0.87 (1)	1.95 (2)	2.805 (3)	170 (4)
172	$O1W$ — $H2W$ ··· $N3^{ii}$	0.87 (1)	1.97 (1)	2.837 (3)	178 (3)
173	O2 <i>W</i> —H4 <i>W</i> ···N4 ⁱⁱⁱ	0.86(1)	2.01 (1)	2.866 (3)	174 (4)
174	N4—H1 N ····O2 ^{iv}	0.84 (3)	2.40 (3)	3.070 (3)	137 (3)

175 Symmetry codes: (i) x, -y+1, z-1/2; (ii) x+1/2, -y+1/2, z-1/2; (iii) x, -y, z-1/2; (iv) x+1/2, y-1/2, z.

176 **(II)**

177 Crystal data

- $178 C_{10}H_9N_4NaO_2S$
- 179 $M_r = 272.26$

180 Monoclinic, $P2_1/c$

- $181 \quad a = 5.9010 (11) \text{ Å}$
- $182 \quad b = 10.534 (4) \text{ Å}$
- $_{183}$ c = 18.389 (3) Å
- $\beta = 94.216 (15)^{\circ}$
- 185 $V = 1140.0 (5) Å^3$
- $_{186}$ Z=4
- 187 Data collection
- 188 Oxford Diffraction Xcalibur E diffractometer
- 189 Radiation source: sealed tube

190 ω scans

191 Refinement

- 192 Refinement on F^2
- 193 Least-squares matrix: full
- 194 $R[F^2 > 2\sigma(F^2)] = 0.038$
- 195 $wR(F^2) = 0.088$

F(000) = 560 $D_x = 1.586 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2254 reflections $\theta = 3.3-29.4^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 123 KRod, colourless $0.35 \times 0.12 \times 0.08 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\rm min} = 0.961, T_{\rm max} = 1.000$ 5903 measured reflections 2786 independent reflections 2351 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$ $\theta_{\rm max} = 29.5^{\circ}, \ \theta_{\rm min} = 3.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -12 \rightarrow 14$ $l = -24 \rightarrow 24$

S = 1.062786 reflections 171 parameters 0 restraints

196	Hydrogen	site	location:	mixed
-----	----------	------	-----------	-------

197	H atoms treated by a mixture of independent
	and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.6871P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.46 \text{ e} \text{ Å}^{-3}$

198 Special details

199 **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

200 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Na1	0.41732 (11)	-0.15699 (7)	0.03430 (4)	0.01483 (18)
S1	0.13569 (7)	0.11080 (4)	0.07836 (2)	0.01030 (12)
01	0.34050 (19)	0.07207 (12)	0.04443 (7)	0.0130 (3)
O2	0.0133 (2)	0.00644 (12)	0.10838 (7)	0.0152 (3)
N1	-0.0383 (2)	0.18774 (14)	0.02732 (8)	0.0121 (3)
N2	0.2445 (2)	0.32085 (15)	-0.01969 (9)	0.0154 (3)
N3	-0.1495 (2)	0.33011 (16)	-0.06053 (9)	0.0155 (3)
N4	0.4138 (3)	0.41926 (17)	0.34001 (9)	0.0182 (4)
C1	0.0271 (3)	0.28102 (17)	-0.01786 (10)	0.0122 (4)
C2	0.2788 (3)	0.42162 (19)	-0.06182 (11)	0.0197 (4)
H2	0.4295	0.4527	-0.0633	0.024*
C3	0.1082 (3)	0.4826 (2)	-0.10308 (12)	0.0224 (4)
Н3	0.1351	0.5566	-0.1307	0.027*
C4	-0.1042 (3)	0.4292 (2)	-0.10165 (11)	0.0198 (4)
H4	-0.2252	0.4653	-0.1318	0.024*
C5	0.2237 (3)	0.20545 (17)	0.15397 (10)	0.0121 (4)
C6	0.0767 (3)	0.21945 (18)	0.20992 (10)	0.0154 (4)
H6	-0.0670	0.1783	0.2059	0.019*
C7	0.1368 (3)	0.29163 (19)	0.27051 (10)	0.0162 (4)
H7	0.0348	0.3008	0.3078	0.019*
C8	0.3482 (3)	0.35145 (18)	0.27712 (10)	0.0141 (4)
C9	0.4953 (3)	0.33673 (19)	0.22135 (11)	0.0177 (4)
H9	0.6399	0.3768	0.2257	0.021*
C10	0.4342 (3)	0.26494 (19)	0.15998 (10)	0.0160 (4)
H10	0.5352	0.2565	0.1224	0.019*
H1N	0.301 (4)	0.454 (2)	0.3602 (13)	0.023 (6)*
H2N	0.528 (4)	0.476 (2)	0.3346 (13)	0.029 (6)*

229 Atomic displacement parameters $(Å^2)$

230		U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
231	Na1	0.0126 (3)	0.0166 (4)	0.0152 (4)	-0.0003 (3)	0.0003 (3)	0.0012 (3)
232	S 1	0.0107 (2)	0.0106 (2)	0.0097 (2)	0.00025 (15)	0.00075 (15)	-0.00029 (17)
233	01	0.0130 (6)	0.0136 (6)	0.0126 (6)	0.0030 (5)	0.0020 (5)	-0.0009 (5)

234	O2	0.0180 (6)	0.0121 (6)	0.0159 (7)	-0.0030 (5)	0.0026 (5)	0.0004 (6)
235	N1	0.0107 (7)	0.0137 (8)	0.0118 (8)	0.0004 (6)	-0.0005 (5)	0.0013 (6)
236	N2	0.0119 (7)	0.0156 (8)	0.0188 (8)	-0.0006 (6)	0.0019 (6)	0.0007 (7)
237	N3	0.0126 (7)	0.0173 (8)	0.0163 (8)	0.0029 (6)	-0.0002 (6)	0.0032 (7)
238	N4	0.0157 (8)	0.0218 (9)	0.0168 (9)	-0.0016 (7)	-0.0016 (6)	-0.0077 (7)
239	C1	0.0116 (8)	0.0136 (9)	0.0114 (9)	0.0017 (7)	0.0013 (6)	-0.0022 (7)
240	C2	0.0165 (9)	0.0183 (10)	0.0247 (11)	-0.0013 (7)	0.0052 (7)	0.0027 (9)
241	C3	0.0243 (10)	0.0171 (10)	0.0267 (12)	0.0027 (8)	0.0084 (8)	0.0075 (9)
242	C4	0.0182 (9)	0.0212 (10)	0.0203 (10)	0.0067 (8)	0.0023 (7)	0.0053 (9)
243	C5	0.0123 (8)	0.0131 (9)	0.0106 (9)	0.0017 (7)	-0.0014 (6)	0.0002 (7)
244	C6	0.0125 (8)	0.0194 (10)	0.0143 (9)	-0.0019 (7)	0.0011 (7)	-0.0023 (8)
245	C7	0.0132 (8)	0.0212 (10)	0.0145 (9)	-0.0003 (7)	0.0027 (7)	-0.0021 (8)
246	C8	0.0146 (8)	0.0143 (9)	0.0129 (9)	0.0013 (7)	-0.0024 (7)	-0.0014 (8)
247	C9	0.0131 (8)	0.0223 (10)	0.0174 (10)	-0.0041 (7)	-0.0010 (7)	-0.0024 (9)
248	C10	0.0132 (8)	0.0204 (10)	0.0148 (9)	-0.0012 (7)	0.0031 (7)	-0.0011 (8)

249 Geometric parameters (Å, °)

Na1—O1 ⁱ	2.2897 (15)	N4—C8	1.390 (2)
Na1—N1 ⁱⁱ	2.4533 (15)	N4—Na1 ^{iv}	2.5772 (19)
Na1—O1	2.4647 (17)	N4—H1N	0.86 (2)
Na1—N3 ⁱⁱ	2.4836 (18)	N4—H2N	0.91 (2)
Na1—N4 ⁱⁱⁱ	2.5771 (19)	C1—Na1 ⁱⁱ	2.9255 (19)
Na1—N2 ⁱ	2.6670 (17)	C2—C3	1.375 (3)
Na1—C1 ⁱⁱ	2.9255 (19)	C2—H2	0.9500
Na1—Na1 ⁱ	3.6964 (19)	C3—C4	1.376 (3)
S1—O2	1.4470 (14)	С3—Н3	0.9500
S1—O1	1.4585 (13)	C4—H4	0.9500
S1—N1	1.5652 (15)	C5—C10	1.388 (2)
S1—C5	1.7582 (18)	C5—C6	1.402 (2)
O1—Na1 ⁱ	2.2897 (15)	C6—C7	1.374 (3)
N1—C1	1.361 (2)	С6—Н6	0.9500
N1—Na1 ⁱⁱ	2.4533 (15)	C7—C8	1.395 (2)
N2—C2	1.338 (3)	С7—Н7	0.9500
N2—C1	1.353 (2)	C8—C9	1.400 (3)
N2—Na1 ⁱ	2.6670 (17)	C9—C10	1.384 (3)
N3—C4	1.328 (3)	С9—Н9	0.9500
N3—C1	1.360 (2)	C10—H10	0.9500
N3—Na1 ⁱⁱ	2.4836 (18)		
O1 ⁱ —Na1—N1 ⁱⁱ	110.47 (5)	C4—N3—C1	116.73 (16)
Ol ⁱ —Nal—Ol	78.00 (5)	C4—N3—Na1 ⁱⁱ	147.74 (13)
N1 ⁱⁱ —Na1—O1	89.87 (5)	C1—N3—Na1 ⁱⁱ	94.60 (11)
O1 ⁱ —Na1—N3 ⁱⁱ	147.71 (6)	C8—N4—Na1 ^{iv}	130.68 (13)
N1 ⁱⁱ —Na1—N3 ⁱⁱ	54.64 (5)	C8—N4—H1N	113.5 (15)
O1—Na1—N3 ⁱⁱ	125.52 (6)	Na1 ^{iv} —N4—H1N	90.2 (15)
O1 ⁱ —Na1—N4 ⁱⁱⁱ	103.13 (6)	C8—N4—H2N	114.1 (15)
N1 ⁱⁱ —Na1—N4 ⁱⁱⁱ	137.28 (6)	Na1 ^{iv} —N4—H2N	93.5 (15)
	$ \begin{array}{c} \hline Na1-O1^i \\ Na1-O1^i \\ Na1-N1^{ii} \\ Na1-O1 \\ Na1-N3^{ii} \\ Na1-N4^{iii} \\ Na1-N4^{iii} \\ Na1-N2^i \\ Na1-C1^{ii} \\ Na1-C1^{ii} \\ Na1-Na1^i \\ S1-O2 \\ S1-O1 \\ S1-N1 \\ S1-O2 \\ S1-O1 \\ S1-N1 \\ S1-C5 \\ O1-Na1^i \\ N1-C1 \\ N1-Na1^{ii} \\ N2-C2 \\ N2-C1 \\ N2-Na1^i \\ N3-C4 \\ N3-C1 \\ N3-C4 \\ N3-C1 \\ N3-Na1^{ii} \\ O1^i-Na1-N1^{ii} \\ O1^i-Na1-O1 \\ O1^i-Na1-O1 \\ O1^i-Na1-N3^{ii} \\ O1^i-Na1-N3^{ii} \\ O1-Na1-N3^{ii} \\ O1^i-Na1-N3^{ii} \\ O1^i-Na1-N4^{iii} \\ N1^{ii}-Na1-N4^{iii} \\ N1^{ii}-Na1-N4^{iii} \\ N1^{ii}-Na1-N4^{iii} \\ N1^{ii}-Na1-N4^{iii} \\ N1^{ii}-Na1-N4^{iii} \\ \end{array} $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

280	O1—Na1—N4 ⁱⁱⁱ	71.83 (5)	H1N—N4—H2N	112 (2)
281	N3 ⁱⁱ —Na1—N4 ⁱⁱⁱ	105.32 (6)	N2—C1—N3	123.76 (17)
282	O1 ⁱ —Na1—N2 ⁱ	71.51 (5)	N2—C1—N1	123.45 (15)
283	N1 ⁱⁱ —Na1—N2 ⁱ	122.11 (6)	N3—C1—N1	112.79 (15)
284	O1—Na1—N2 ⁱ	141.66 (5)	N2—C1—Na1 ⁱⁱ	168.70 (13)
285	N3 ⁱⁱ —Na1—N2 ⁱ	92.06 (6)	N3—C1—Na1 ⁱⁱ	57.80 (9)
286	N4 ⁱⁱⁱ —Na1—N2 ⁱ	92.82 (6)	$N1 - C1 - Na1^{ii}$	56.52 (8)
287	$O1^{i}$ —Na1—C1 ⁱⁱ	134.88 (6)	N2-C2-C3	123.65(17)
288	$N1^{ii}$ $Na1$ $C1^{ii}$	27.56 (5)	N2-C2-H2	118.2
280	$O1$ —Na1— $C1^{ii}$	106.06 (5)	C3—C2—H2	118.2
209	$N3^{ii}$ $Na1$ $C1^{ii}$	27.60 (5)	C_{2} C_{3} C_{4}	115.45 (19)
290	$N4^{iii}$ $Na1$ $C1^{ii}$	121.09(6)	$C_2 = C_3 = H_3$	122.3
291	$N2^{i}$ No1 $C1^{ii}$	111.85 (6)	$C_2 = C_3 = H_3$	122.5
292	$N_2 - N_{a1} - C_1$	111.03(0)	C4 - C5 - 115	122.5
293	N1 ⁱⁱ N-1 N-1 ⁱ	40.71(3)	$N_{2} = C_{4} = C_{3}$	123.00 (16)
294	$N1^{\circ}$ $Na1$ $Na1^{\circ}$	102.42(5)	$N_3 - C_4 - H_4$	118.2
295	VI	37.29 (4)	C3—C4—H4	118.2
296	N ³ ⁿ —Na1—Na1 ⁱ	155.65 (5)	0-05-06	119.51 (17)
297	N4 ^m —Na1—Na1 ^r	86.15 (5)	C10—C5—S1	121.98 (14)
298	$N2^{1}$ —Na1—Na1 ¹	109.06 (5)	C6—C5—S1	118.51 (13)
299	C1 ⁿ —Na1—Na1 ¹	128.42 (5)	C7—C6—C5	121.10 (16)
300	O2—S1—O1	113.78 (8)	С7—С6—Н6	119.5
301	O2—S1—N1	107.35 (8)	С5—С6—Н6	119.5
302	01—S1—N1	114.59 (8)	C6—C7—C8	119.79 (17)
303	O2—S1—C5	104.83 (8)	С6—С7—Н7	120.1
304	O1—S1—C5	106.92 (8)	С8—С7—Н7	120.1
305	N1—S1—C5	108.86 (8)	N4—C8—C7	119.84 (17)
306	S1—O1—Na1 ⁱ	137.43 (8)	N4—C8—C9	121.08 (16)
307	S1—O1—Na1	117.97 (7)	C7—C8—C9	119.01 (17)
308	Na1 ⁱ —O1—Na1	102.00 (5)	C10—C9—C8	121.26 (16)
309	C1—N1—S1	122.48 (12)	С10—С9—Н9	119.4
310	C1—N1—Na1 ⁱⁱ	95.92 (10)	С8—С9—Н9	119.4
311	S1—N1—Na1 ⁱⁱ	138.08 (9)	C9—C10—C5	119.32 (17)
312	C2—N2—C1	116.40 (15)	C9—C10—H10	120.3
313	C2—N2—Na1 ⁱ	107.99 (12)	C5—C10—H10	120.3
314	C1—N2—Na1 ⁱ	121.33 (12)		
315				
316	O2—S1—O1—Na1 ⁱ	163.45 (10)	Na1 ⁱⁱ —N1—C1—N3	13.88 (16)
317	$N1 - S1 - O1 - Na1^{i}$	39 38 (14)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	162 33 (16)
318	$C5 = S1 = O1 = Na1^{i}$	-81.32(12)	C1 - N2 - C2 - C3	-13(3)
210	02 - S1 - 01 - Na1	5.61 (10)	$Na1^{i} N2 C2 C3$	139 15 (18)
220	$N_1 = S_1 = O_1 = N_{a1}$	-118.45(8)	$N_2 C_2 C_3 C_4$	-32(3)
320	$C_5 = S_1 = O_1 = N_{a1}$	110.43(0)	112 - 62 - 63 - 64	0.2(3)
321	$O_2 = S_1 = O_1 = Na_1$	-170.12(14)	$C_1 - 1N_3 - C_4 - C_3$ Na 1 ⁱⁱ N2 C4 C2	-164.95(19)
322	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-170.13(14) -42.71(17)	$\frac{11}{11} - \frac{11}{11} - 11$	-104.83(18)
323	$C_{1} = C_{1} = C_{1}$	-42./1(1/)	$C_2 = C_3 = C_4 = N_3$	3.0(3)
324	$C_{3} = S_{1} = N_{1} = C_{1}$	/0.92 (10)	02 - 51 - 05 - 010	141.97 (13)
325	$02 - 51 - N1 - Na1^{"}$	-1/.00(15)	01 - 51 - 05 - 010	20.87 (18)
326	UI-SI-NI-Nal"	110.42 (13)	N1-S1-C5-C10	-103.42 (16)
327	C5—S1—N1—Nal ⁿ	-129.95 (13)	02 - 81 - C5 - C6	-37.32 (16)

328	C2—N2—C1—N3	5.9 (3)	O1—S1—C5—C6	-158.41 (14)
329	Na1 ⁱ —N2—C1—N3	-128.95 (16)	N1—S1—C5—C6	77.29 (16)
330	C2—N2—C1—N1	-173.70 (18)	C10-C5-C6-C7	0.3 (3)
331	Na1 ⁱ —N2—C1—N1	51.4 (2)	S1—C5—C6—C7	179.62 (15)
332	C2—N2—C1—Na1 ⁱⁱ	100.2 (7)	C5—C6—C7—C8	-0.5 (3)
333	Na1 ⁱ —N2—C1—Na1 ⁱⁱ	-34.7 (7)	Na1 ^{iv} —N4—C8—C7	81.0 (2)
334	C4—N3—C1—N2	-5.4 (3)	Na1 ^{iv} —N4—C8—C9	-95.8 (2)
335	Na1 ⁱⁱ —N3—C1—N2	166.65 (16)	C6—C7—C8—N4	-176.79 (18)
336	C4—N3—C1—N1	174.24 (17)	C6—C7—C8—C9	0.1 (3)
337	Na1 ⁱⁱ —N3—C1—N1	-13.67 (16)	N4-C8-C9-C10	177.32 (18)
338	C4—N3—C1—Na1 ⁱⁱ	-172.09 (19)	C7—C8—C9—C10	0.4 (3)
339	S1—N1—C1—N2	-4.1 (3)	C8—C9—C10—C5	-0.6 (3)
340	Na1 ⁱⁱ —N1—C1—N2	-166.45 (16)	C6-C5-C10-C9	0.2 (3)
341	S1—N1—C1—N3	176.20 (13)	S1—C5—C10—C9	-179.03 (15)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*, -*y*, -*z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) -*x*+1, *y*+1/2, -*z*+1/2. 342

Hydrogen-bond geometry (Å, °) 343

344	D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
345	N4—H1 <i>N</i> ···O2 ^v	0.86 (2)	2.06 (2)	2.907 (2)	166 (2)
346	$N4-H2N\cdotsO1^{N}$	0.91 (2)	2.52 (2)	2.959 (2)	110.5 (17)

Symmetry codes: (iv) -x+1, y+1/2, -z+1/2; (v) -x, y+1/2, -z+1/2. 347

(111) 348

Crystal data 349

350	$C_{10}H_{13}KN_4O_4S$

351	$M_r = 324.40$	F(000) = 672
352	Triclinic, P1	$D_{\rm x} = 1.594 {\rm ~Mg} {\rm ~m}^{-3}$
353	a = 8.8503 (7) Å	Cu K α radiation, $\lambda = 1.5418$ Å
354	b = 9.6385 (4) Å	Cell parameters from 3605 reflec
355	c = 15.9734 (7) Å	$\theta = 4.6 - 73.6^{\circ}$
356	$\alpha = 92.350 \ (4)^{\circ}$	$\mu = 5.09 \text{ mm}^{-1}$
357	$\beta = 95.186 \ (4)^{\circ}$	T = 123 K
358	$\gamma = 94.209 \ (4)^{\circ}$	Block, colourless
359	$V = 1351.79 (13) \text{ Å}^3$	$0.28\times0.15\times0.10~mm$
360	Data collection	
361	Oxford Diffraction Gemini S	3951 reflections with $I > 2\sigma(I)$

diffractometer Radiation source: sealed tube 362

 ω scans 363

Absorption correction: multi-scan 364 CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $T_{\rm min} = 0.601, \ T_{\rm max} = 1.000$ 365

- 15580 measured reflections 366
- 5357 independent reflections 367

Z = 4tions

 $R_{\rm int} = 0.050$ $\theta_{\rm max} = 73.8^{\circ}, \, \theta_{\rm min} = 4.6^{\circ}$ $h = -8 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -19 \rightarrow 19$

- 368 Refinement
- 369 Refinement on F^2
- 370 Least-squares matrix: full
- 371 $R[F^2 > 2\sigma(F^2)] = 0.060$
- $wR(F^2) = 0.157$
- ₃₇₃ S = 1.05
- 374 5357 reflections
- 375 404 parameters
- 376 14 restraints
- 377 Special details

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 2.5308P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.81$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

379 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

380		x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
381	K1	0.24189 (11)	0.55756 (9)	0.47536 (6)	0.0350 (2)	
382	K2	-0.15927 (12)	0.82674 (9)	0.41066 (6)	0.0365 (2)	
383	S 1	-0.26644 (12)	0.67031 (10)	0.19910 (6)	0.0304 (2)	
384	S2	-0.05315 (12)	0.81132 (10)	0.61877 (6)	0.0281 (2)	
385	O1	-0.3523 (3)	0.6886 (3)	0.27240 (19)	0.0345 (7)	
386	O2	-0.3075 (4)	0.7607 (3)	0.1321 (2)	0.0398 (7)	
387	O1W	0.4746 (5)	0.4378 (5)	0.5915 (3)	0.0735 (14)	
388	H1W	0.450 (9)	0.398 (6)	0.637 (2)	0.110*	
389	H2W	0.481 (10)	0.362 (4)	0.560 (4)	0.110*	
390	O3	-0.0548 (3)	0.9494 (3)	0.58530 (18)	0.0326 (7)	
391	O2W	0.2375 (5)	0.8119 (4)	0.3937 (2)	0.0549 (10)	
392	H3W	0.196 (7)	0.891 (4)	0.398 (4)	0.082*	
393	H4W	0.199 (7)	0.785 (6)	0.3424 (17)	0.082*	
394	O4	-0.1743 (4)	0.7140 (3)	0.57871 (18)	0.0346 (7)	
395	O3W	-0.0485 (4)	0.5553 (3)	0.39403 (19)	0.0359 (7)	
396	H5W	-0.050 (6)	0.584 (4)	0.3428 (13)	0.054*	
397	H6W	-0.068 (6)	0.4658 (13)	0.384 (3)	0.054*	
398	O4W	-0.4475 (5)	0.8724 (4)	0.4641 (3)	0.0604 (11)	
399	H7W	-0.541 (3)	0.843 (7)	0.445 (4)	0.091*	
400	H8W	-0.466 (9)	0.954 (7)	0.486 (9)	0.091*	0.5
401	H9W	-0.436 (10)	0.819 (11)	0.507 (5)	0.091*	0.5
402	N1	-0.0933 (4)	0.6879 (3)	0.2369 (2)	0.0301 (8)	
403	N2	0.1612 (4)	0.7098 (4)	0.2256 (2)	0.0342 (8)	
404	N3	-0.0068 (4)	0.6541 (4)	0.1017 (2)	0.0348 (8)	
405	N4	-0.4201 (6)	0.0807 (5)	0.0779 (3)	0.0504 (12)	
406	N5	0.0982 (4)	0.7389 (4)	0.6097 (2)	0.0317 (8)	
407	N6	0.2546 (4)	0.9310 (3)	0.6755 (2)	0.0303 (8)	
408	N7	0.3546 (5)	0.7193 (4)	0.6308 (2)	0.0384 (9)	
409	N8	-0.1718 (6)	0.8726 (5)	0.9774 (3)	0.0441 (10)	
410	C1	0.0218 (5)	0.6828 (4)	0.1849 (3)	0.0309 (9)	

411	C2	0.2782 (6)	0.7163 (5)	0.1785 (3)	0.0433 (11)
412	H2	0.3781	0.7352	0.2055	0.052*
413	C3	0.2599 (6)	0.6967 (5)	0.0925 (3)	0.0447 (12)
414	H3	0.3436	0.7068	0.0593	0.054*
415	C4	0.1144 (6)	0.6617 (5)	0.0567 (3)	0.0406 (11)
416	H4	0.0987	0.6421	-0.0023	0.049*
417	C5	-0.3070 (5)	0.4959 (4)	0.1601 (3)	0.0299 (9)
418	C6	-0.2140 (5)	0.3935 (4)	0.1847 (3)	0.0312 (9)
419	H6	-0.1236	0.4172	0.2207	0.037*
420	C7	-0.2516 (5)	0.2566 (5)	0.1571 (3)	0.0353 (10)
421	H7	-0.1851	0.1873	0.1732	0.042*
422	C8	-0.3841 (5)	0.2186 (5)	0.1065 (3)	0.0377 (11)
423	C9	-0.4762 (6)	0.3219 (6)	0.0812 (3)	0.0480 (13)
424	H9	-0.5667	0.2978	0.0453	0.058*
425	C10	-0.4386 (5)	0.4598 (5)	0.1073 (3)	0.0436 (12)
426	H10	-0.5028	0.5297	0.0892	0.052*
427	C11	0.2388 (5)	0.8013 (4)	0.6399 (3)	0.0295 (9)
428	C12	0.3946 (5)	0.9760 (4)	0.7084 (3)	0.0339 (10)
429	H12	0.4095	1.0670	0.7344	0.041*
430	C13	0.5188 (5)	0.8976 (5)	0.7068 (3)	0.0384 (10)
431	H13	0.6166	0.9299	0.7326	0.046*
432	C14	0.4908 (6)	0.7693 (5)	0.6650 (3)	0.0428 (11)
433	H14	0.5740	0.7133	0.6603	0.051*
434	C15	-0.0866 (5)	0.8295 (4)	0.7260 (2)	0.0269 (8)
435	C16	-0.1369 (5)	0.7129 (4)	0.7677 (3)	0.0298 (9)
436	H16	-0.1542	0.6246	0.7382	0.036*
437	C17	-0.1615 (5)	0.7256 (4)	0.8511 (3)	0.0334 (10)
438	H17	-0.1935	0.6454	0.8794	0.040*
439	C18	-0.1399 (5)	0.8561 (4)	0.8955 (3)	0.0313 (9)
440	C19	-0.0884 (5)	0.9708 (4)	0.8523 (3)	0.0300 (9)
441	H19	-0.0723	1.0597	0.8810	0.036*
442	C20	-0.0605 (5)	0.9583 (4)	0.7689 (3)	0.0281 (9)
443	H20	-0.0236	1.0373	0.7410	0.034*
444	H1N	-0.515 (8)	0.057 (7)	0.059 (4)	0.07 (2)*
445	H2N	-0.383 (7)	0.010 (7)	0.111 (4)	0.06 (2)*
446	H3N	-0.185 (6)	0.800 (5)	1.008 (3)	0.037 (14)*
447	H4N	-0.156 (6)	0.955 (6)	1.004 (3)	0.053 (16)*

448	Atomic	displacemen	t parameters	$(Å^2)$
-----	--------	-------------	--------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	0.0413 (5)	0.0269 (5)	0.0355 (5)	-0.0036 (4)	0.0044 (4)	-0.0060 (4)
K2	0.0504 (6)	0.0234 (4)	0.0337 (5)	-0.0016 (4)	-0.0020 (4)	-0.0007 (3)
S 1	0.0337 (6)	0.0274 (5)	0.0301 (5)	0.0045 (4)	0.0037 (4)	-0.0023 (4)
S2	0.0327 (5)	0.0236 (5)	0.0269 (5)	-0.0012 (4)	0.0021 (4)	-0.0022 (4)
01	0.0344 (17)	0.0338 (16)	0.0354 (16)	0.0017 (13)	0.0071 (13)	-0.0064 (13)
O2	0.046 (2)	0.0372 (17)	0.0375 (17)	0.0119 (14)	0.0050 (14)	0.0017 (13)
O1W	0.048 (2)	0.079 (3)	0.100 (4)	0.009 (2)	0.018 (2)	0.049 (3)

457	O3	0.0342 (17)	0.0296 (15)	0.0339 (16)	0.0023 (13)	0.0021 (12)	0.0019 (12)
458	O2W	0.077 (3)	0.0357 (19)	0.050(2)	0.0102 (19)	-0.0048 (19)	-0.0027 (16)
459	O4	0.0381 (17)	0.0325 (16)	0.0310 (15)	-0.0049 (13)	0.0005 (13)	-0.0043 (12)
460	O3W	0.0464 (19)	0.0274 (15)	0.0330 (16)	0.0014 (14)	0.0028 (14)	-0.0039 (12)
461	O4W	0.079 (3)	0.039 (2)	0.067 (3)	0.0007 (19)	0.031 (2)	0.0003 (18)
462	N1	0.036 (2)	0.0247 (17)	0.0286 (18)	-0.0033 (15)	0.0060 (15)	-0.0011 (14)
463	N2	0.033 (2)	0.0271 (18)	0.043 (2)	0.0030 (15)	0.0090 (16)	0.0011 (15)
464	N3	0.045 (2)	0.0241 (18)	0.036 (2)	0.0029 (16)	0.0113 (17)	-0.0007 (15)
465	N4	0.057 (3)	0.045 (3)	0.045 (3)	-0.017 (2)	0.010 (2)	-0.020 (2)
466	N5	0.040 (2)	0.0240 (17)	0.0315 (19)	0.0023 (15)	0.0070 (15)	-0.0046 (14)
467	N6	0.033 (2)	0.0240 (17)	0.0340 (19)	-0.0005 (14)	0.0040 (15)	-0.0004 (14)
468	N7	0.045 (2)	0.034 (2)	0.037 (2)	0.0081 (17)	0.0049 (17)	-0.0048 (16)
469	N8	0.071 (3)	0.031 (2)	0.031 (2)	-0.002 (2)	0.0101 (19)	-0.0008 (17)
470	C1	0.038 (2)	0.0164 (19)	0.039 (2)	0.0026 (17)	0.0089 (19)	0.0003 (16)
471	C2	0.035 (3)	0.033 (2)	0.064 (3)	0.007 (2)	0.012 (2)	0.010 (2)
472	C3	0.043 (3)	0.041 (3)	0.057 (3)	0.015 (2)	0.023 (2)	0.011 (2)
473	C4	0.059 (3)	0.029 (2)	0.038 (2)	0.009 (2)	0.017 (2)	0.0040 (18)
474	C5	0.028 (2)	0.032 (2)	0.029 (2)	0.0021 (17)	0.0035 (16)	-0.0066 (17)
475	C6	0.032 (2)	0.029 (2)	0.031 (2)	0.0000 (18)	-0.0012 (17)	-0.0006 (17)
476	C7	0.043 (3)	0.030 (2)	0.033 (2)	0.0007 (19)	0.0027 (19)	-0.0010 (17)
477	C8	0.037 (3)	0.040 (2)	0.035 (2)	-0.008 (2)	0.0099 (19)	-0.0118 (19)
478	C9	0.031 (3)	0.060 (3)	0.048 (3)	-0.004 (2)	-0.002 (2)	-0.028 (2)
479	C10	0.030 (2)	0.054 (3)	0.046 (3)	0.016 (2)	-0.004 (2)	-0.017 (2)
480	C11	0.035 (2)	0.027 (2)	0.028 (2)	0.0019 (17)	0.0058 (17)	0.0002 (16)
481	C12	0.036 (2)	0.028 (2)	0.037 (2)	-0.0023 (18)	0.0018 (19)	-0.0017 (17)
482	C13	0.023 (2)	0.047 (3)	0.044 (3)	0.0054 (19)	-0.0007 (18)	-0.001 (2)
483	C14	0.036 (3)	0.052 (3)	0.042 (3)	0.018 (2)	0.004 (2)	0.000 (2)
484	C15	0.028 (2)	0.026 (2)	0.027 (2)	0.0014 (16)	0.0041 (16)	-0.0019 (15)
485	C16	0.030 (2)	0.022 (2)	0.036 (2)	0.0004 (16)	0.0022 (17)	-0.0044 (16)
486	C17	0.037 (2)	0.022 (2)	0.041 (2)	-0.0012 (18)	0.0028 (19)	0.0044 (17)
487	C18	0.030 (2)	0.031 (2)	0.032 (2)	0.0013 (18)	0.0016 (17)	-0.0023 (17)
488	C19	0.029 (2)	0.023 (2)	0.036 (2)	0.0024 (17)	0.0001 (17)	-0.0061 (16)
489	C20	0.025 (2)	0.0224 (19)	0.036 (2)	0.0003 (16)	0.0016 (16)	0.0004 (16)

490 Geometric parameters (Å, °)

491	K1—O4 ⁱ	2.729 (3)	N1—C1	1.373 (5)
492	K1—O3W	2.771 (3)	N2—C2	1.333 (6)
493	K1—O1W ⁱⁱ	2.812 (5)	N2—C1	1.343 (6)
494	K1—O2W	2.824 (4)	N3—C4	1.343 (6)
495	K1—N7	2.932 (4)	N3—C1	1.344 (6)
496	K1—O1W	2.975 (5)	N4—C8	1.393 (6)
497	K1—O3W ⁱ	3.004 (3)	N4—H1N	0.87 (7)
498	K1—N5	3.129 (4)	N4—H2N	0.93 (7)
499	K1—C11	3.457 (4)	N5—C11	1.379 (5)
500	K1—K2 ⁱ	4.2385 (13)	N6-C12	1.336 (6)
501	K1—K1 ⁱ	4.491 (2)	N6-C11	1.344 (5)
502	K1—K2	4.6167 (15)	N6—K2 ⁱⁱⁱ	2.899 (4)

503	K1—H6W	3.04 (5)	N7—C14	1.325 (6)
504	K2—O3 ⁱⁱⁱ	2.759 (3)	N7—C11	1.355 (6)
505	K2—O4W	2.820 (4)	N8—C18	1.369 (6)
506	K2—O3W	2.871 (3)	N8—H3N	0.87 (5)
507	K2—O1	2.883 (3)	N8—H4N	0.88 (6)
508	K2—N6 ⁱⁱⁱ	2.899 (4)	C2—C3	1.372 (7)
509	K2—O4	2.947 (3)	C2—H2	0.9500
510	К2—ОЗ	3.023 (3)	C3—C4	1.373 (7)
511	K2—N1	3.153 (3)	С3—Н3	0.9500
512	K2—S2	3.3840 (14)	C4—H4	0.9500
513	$K2-C12^{iii}$	3.425 (5)	C5—C6	1.378 (6)
514	K2—S1	3.6587 (14)	C5-C10	1.388 (6)
515	$K^2 - K^{1i}$	4 2385 (13)	C6—C7	1 382 (6)
516	K2—H5W	2 81 (5)	С6—Н6	0.9500
517	K2H9W	3.01(11)	C7 - C8	1 379 (6)
512	S1-02	1 445 (3)	С7—Н7	0.9500
510	S101	1.445(3)	C_{8}	1.383(7)
519	S101	1.404(3)	C_{0}	1.385(7)
520	S1_S1	1.369(4)	C_{2}	1.385(7)
521	S1-C3	1.709(4)	C10 U10	0.9300
522	S2-03	1.433(3)	C10 $-H10$	0.9300
523	S2	1.433(3)		1.380(6)
524	52—N5 52—C15	1.370(4)	$C12 - K2^{-1}$	5.425 (5)
525	52	1.708(4)		0.9500
526		2.812 (5)		1.376(7)
527	OIW—HIW	0.880 (10)	C13—H13	0.9500
528	OIW—H2W	0.877 (10)	Cl4—Hl4	0.9500
529	O3—K2 ⁱⁿ	2.759 (3)	C15—C20	1.387 (5)
530	O2W—H3W	0.878 (10)	C15—C16	1.395 (6)
531	O2W—H4W	0.880 (10)	C16—C17	1.372 (6)
532	O4—K1 ¹	2.729 (3)	C16—H16	0.9500
533	O3W—K1 ⁱ	3.004 (3)	C17—C18	1.410 (6)
534	O3W—H5W	0.874 (10)	С17—Н17	0.9500
535	O3W—H6W	0.873 (10)	C18—C19	1.397 (6)
536	O4W—H7W	0.878 (10)	C19—C20	1.378 (6)
537	O4W—H8W	0.879 (10)	C19—H19	0.9500
538	O4W—H9W	0.878 (10)	C20—H20	0.9500
539				
540	O4 ⁱ —K1—O3W	76.14 (9)	C12 ⁱⁱⁱ —K2—H5W	121.5 (6)
541	$O4^{i}$ —K1—O1 W^{ii}	91.40 (13)	S1—K2—H5W	54.1 (7)
542	O3W—K1—O1W ⁱⁱ	129.93 (13)	K1 ⁱ —K2—H5W	60.3 (5)
543	O4 ⁱ —K1—O2W	133.37 (10)	O3 ⁱⁱⁱ —K2—H9W	124 (2)
544	O3W—K1—O2W	75.00 (11)	O4W—K2—H9W	17.0 (8)
545	O1W ⁱⁱ —K1—O2W	80.19 (13)	O3W—K2—H9W	111.2 (19)
546	O4 ⁱ —K1—N7	138.88 (11)	O1—K2—H9W	87.0 (19)
547	O3W—K1—N7	125.77 (11)	N6 ⁱⁱⁱ —K2—H9W	91.0 (12)
548	O1W ⁱⁱ —K1—N7	95.36 (15)	O4—K2—H9W	55.4 (6)
549	O2W—K1—N7	87.72 (11)	O3—K2—H9W	73.4 (18)
550	O4 ⁱ —K1—O1W	83.27 (12)	N1—K2—H9W	133 (2)

551	O3W—K1—O1W	152.02 (11)	S2—K2—H9W	70.2 (11)
552	O1W ⁱⁱ —K1—O1W	68.49 (15)	C12 ⁱⁱⁱ —K2—H9W	78.2 (7)
553	O2W—K1—O1W	132.73 (12)	S1—K2—H9W	109.0 (18)
554	N7—K1—O1W	62.11 (14)	K1 ⁱ —K2—H9W	67.2 (16)
555	$O4^{i}$ —K1— $O3W^{i}$	76.90 (9)	H5W—K2—H9W	122 (2)
556	O3W—K1—O3W ⁱ	78.00 (10)	O2—S1—O1	113.35 (19)
557	O1W ⁱⁱ —K1—O3W ⁱ	146.61 (12)	O2—S1—N1	115.66 (19)
558	$O2W$ — $K1$ — $O3W^i$	130.21 (12)	O1—S1—N1	104.21 (18)
559	$N7-K1-O3W^{i}$	75.36 (10)	O2—S1—C5	108.1 (2)
560	O1W—K1—O3W ⁱ	79.04 (11)	O1—S1—C5	107.12 (18)
561	O4 ⁱ —K1—N5	130.33 (10)	N1—S1—C5	107.9 (2)
562	O3W—K1—N5	81.94 (10)	O2—S1—K2	118.44 (13)
563	O1W ⁱⁱ —K1—N5	135.34 (13)	O1—S1—K2	47.64 (12)
564	O2W—K1—N5	80.19 (11)	N1—S1—K2	59.11 (13)
565	N7—K1—N5	44.19 (10)	C5—S1—K2	132.72 (15)
566	O1W—K1—N5	97.70 (13)	O3—S2—O4	112.95 (18)
567	O3W ⁱ —K1—N5	55.02 (9)	O3—S2—N5	114.45 (19)
568	O4 ⁱ —K1—C11	145.79 (10)	O4—S2—N5	105.51 (19)
569	O3W—K1—C11	103.38 (10)	O3—S2—C15	106.97 (18)
570	O1W ⁱⁱ —K1—C11	112.40 (14)	O4—S2—C15	106.49 (18)
571	O2W—K1—C11	76.90 (10)	N5—S2—C15	110.2 (2)
572	N7—K1—C11	22.63 (11)	O3—S2—K2	63.26 (12)
573	O1W—K1—C11	83.25 (13)	O4—S2—K2	60.28 (12)
574	O3W ⁱ —K1—C11	69.73 (9)	N5—S2—K2	97.00 (14)
575	N5—K1—C11	23.50 (10)	C15—S2—K2	152.44 (15)
576	$O4^{i}$ —K1—K2 ⁱ	43.70 (6)	S1—O1—K2	110.33 (15)
577	$O3W$ — $K1$ — $K2^{i}$	94.71 (7)	K1 ⁱⁱ —O1W—K1	111.51 (15)
578	$O1W^{ii}$ —K1—K2 ⁱ	109.14 (9)	K1 ⁱⁱ —O1W—H1W	126 (5)
579	$O2W$ — $K1$ — $K2^i$	169.33 (10)	K1—O1W—H1W	122 (6)
580	$N7-K1-K2^{i}$	96.31 (8)	K1 ⁱⁱ —O1W—H2W	69 (6)
581	$O1W$ — $K1$ — $K2^i$	57.39 (8)	K1—O1W—H2W	96 (6)
582	$O3W^{i}$ —K1—K2 ⁱ	42.59 (6)	H1W—O1W—H2W	98 (2)
583	$N5-K1-K2^{i}$	95.81 (7)	S2—O3—K2 ⁱⁱⁱ	133.47 (17)
584	C11—K1—K2 ⁱ	103.32 (7)	S2—O3—K2	91.28 (13)
585	$O4^{i}$ —K1—K1 ⁱ	72.58 (7)	K2 ⁱⁱⁱ —O3—K2	114.35 (10)
586	O3W—K1—K1 ⁱ	40.87 (7)	K1—O2W—H3W	139 (4)
587	O1W ⁱⁱ —K1—K1 ⁱ	162.68 (12)	K1—O2W—H4W	102 (4)
588	$O2W - K1 - K1^{i}$	105.79 (10)	H3W—O2W—H4W	99 (2)
589	$N7-K1-K1^{i}$	101.05 (9)	$S2-O4-K1^{i}$	143.3 (2)
590	$O1W$ — $K1$ — $K1^i$	114.70 (9)	S2—O4—K2	94.33 (14)
591	O3W ⁱ —K1—K1 ⁱ	37.13 (6)	K1 ⁱ —O4—K2	96.54 (9)
592	$N5-K1-K1^{i}$	61.97 (7)	K1—O3W—K2	109.81 (10)
593	C11—K1—K1 ⁱ	84.90 (8)	K1—O3W—K1 ⁱ	102.00 (10)
594	$K2^{i}$ — $K1$ — $K1^{i}$	63.78 (3)	$K2 - O3W - K1^{i}$	92.33 (9)
595	O4 ⁱ —K1—K2	111.87 (7)	K1—O3W—H5W	114 (4)
596	O3W—K1—K2	35.80 (6)	K2—O3W—H5W	77 (3)
597	O1W ⁱⁱ —K1—K2	128.87 (9)	K1 ⁱ —O3W—H5W	144 (4)
598	O2W—K1—K2	50.39 (10)	K1—O3W—H6W	99 (4)

599	N7—K1—K2	94.90 (8)	K2—O3W—H6W	149 (4)
600	O1W—K1—K2	154.32 (11)	K1 ⁱ —O3W—H6W	71 (3)
601	O3W ⁱ —K1—K2	84.29 (7)	H5W—O3W—H6W	101 (2)
602	N5—K1—K2	56.63 (7)	K2—O4W—H7W	134 (5)
603	C11—K1—K2	72.66 (8)	K2—O4W—H8W	121 (7)
604	K2 ⁱ —K1—K2	119.23 (3)	H7W—O4W—H8W	99 (2)
605	K1 ⁱ —K1—K2	55.45 (3)	K2—O4W—H9W	94 (8)
606	O4 ⁱ —K1—H6W	59.8 (5)	H7W—O4W—H9W	99 (2)
607	O3W—K1—H6W	16.5 (5)	C1—N1—S1	120.6 (3)
608	O1W ⁱⁱ —K1—H6W	127.1 (9)	C1—N1—K2	139.9 (3)
609	O2W—K1—H6W	89.3 (5)	S1—N1—K2	95.26 (15)
610	N7—K1—H6W	136.2 (8)	C2—N2—C1	116.9 (4)
611	O1W—K1—H6W	137.8 (5)	C4—N3—C1	116.1 (4)
612	O3W ⁱ —K1—H6W	73.6 (8)	C8—N4—H1N	117 (4)
613	N5—K1—H6W	92.3 (8)	C8—N4—H2N	118 (4)
614	C11—K1—H6W	115.3 (8)	H1N—N4—H2N	110 (6)
615	K2 ⁱ —K1—H6W	80.9 (6)	C11—N5—S2	122.3 (3)
616	K1 ⁱ —K1—H6W	38.7 (9)	C11—N5—K1	91.7 (2)
617	K2—K1—H6W	52.1 (5)	S2—N5—K1	138.42 (19)
618	O3 ⁱⁱⁱ —K2—O4W	118.31 (10)	C12—N6—C11	116.1 (4)
619	O3 ⁱⁱⁱ —K2—O3W	116.43 (10)	C12—N6—K2 ⁱⁱⁱ	101.5 (3)
620	O4W—K2—O3W	123.26 (11)	C11—N6—K2 ⁱⁱⁱ	123.5 (3)
621	O3 ⁱⁱⁱ —K2—O1	130.90 (9)	C14—N7—C11	116.3 (4)
622	O4W—K2—O1	80.08 (11)	C14—N7—K1	134.6 (3)
623	O3W—K2—O1	75.53 (9)	C11—N7—K1	101.0 (3)
624	O3 ⁱⁱⁱ —K2—N6 ⁱⁱⁱ	63.92 (9)	C18—N8—H3N	121 (3)
625	O4W—K2—N6 ⁱⁱⁱ	74.67 (11)	C18—N8—H4N	120 (4)
626	O3W—K2—N6 ⁱⁱⁱ	146.26 (10)	H3N—N8—H4N	117 (5)
627	O1—K2—N6 ⁱⁱⁱ	80.79 (10)	N2—C1—N3	124.9 (4)
628	O3 ⁱⁱⁱ —K2—O4	111.22 (9)	N2-C1-N1	113.4 (4)
629	O4W—K2—O4	72.00 (12)	N3—C1—N1	121.7 (4)
630	O3W—K2—O4	75.72 (9)	N2—C2—C3	122.6 (5)
631	O1—K2—O4	117.84 (9)	N2—C2—H2	118.7
632	N6 ⁱⁱⁱ —K2—O4	137.47 (10)	C3—C2—H2	118.7
633	O3 ⁱⁱⁱ —K2—O3	65.65 (10)	C2—C3—C4	116.6 (4)
634	O4W—K2—O3	81.82 (11)	С2—С3—Н3	121.7
635	O3W—K2—O3	108.46 (9)	С4—С3—Н3	121.7
636	O1—K2—O3	160.24 (9)	N3—C4—C3	122.8 (5)
637	N6 ⁱⁱⁱ —K2—O3	101.97 (9)	N3—C4—H4	118.6
638	O4—K2—O3	47.93 (8)	C3—C4—H4	118.6
639	O3 ⁱⁱⁱ —K2—N1	97.57 (9)	C6—C5—C10	119.2 (4)
640	O4W—K2—N1	126.61 (12)	C6—C5—S1	121.0 (3)
641	O3W—K2—N1	56.72 (9)	C10—C5—S1	119.7 (4)
642	O1—K2—N1	46.81 (9)	C5—C6—C7	120.2 (4)
643	N6 ⁱⁱⁱ —K2—N1	89.55 (10)	С5—С6—Н6	119.9
644	O4—K2—N1	131.79 (9)	С7—С6—Н6	119.9
645	O3—K2—N1	151.48 (10)	C8—C7—C6	121.2 (5)
646	O3 ⁱⁱⁱ —K2—S2	85.85 (7)	С8—С7—Н7	119.4

647	O4W—K2—S2	84.25 (10)	С6—С7—Н7	119.4
648	O3W—K2—S2	85.87 (7)	C7—C8—C9	118.4 (4)
649	O1—K2—S2	143.14 (7)	C7—C8—N4	120.9 (5)
650	N6 ⁱⁱⁱ —K2—S2	126.55 (7)	C9—C8—N4	120.7 (5)
651	O4—K2—S2	25.39 (6)	C8—C9—C10	121.0 (4)
652	O3—K2—S2	25.46 (6)	С8—С9—Н9	119.5
653	N1—K2—S2	139.86 (8)	С10—С9—Н9	119.5
654	O3 ⁱⁱⁱ —K2—C12 ⁱⁱⁱ	86.35 (10)	C9—C10—C5	119.9 (5)
655	O4W—K2—C12 ⁱⁱⁱ	61.29 (12)	C9—C10—H10	120.1
656	O3W—K2—C12 ⁱⁱⁱ	136.33 (10)	C5-C10-H10	120.1
657	O1—K2—C12 ⁱⁱⁱ	62.11 (10)	N6	124.8 (4)
658	N6 ⁱⁱⁱ —K2—C12 ⁱⁱⁱ	22.46 (10)	N6-C11-N5	121.6 (4)
659	O4—K2—C12 ⁱⁱⁱ	132.77 (10)	N7-C11-N5	113.6 (4)
660	O3—K2—C12 ⁱⁱⁱ	114.98 (9)	N6-C11-K1	154.2 (3)
661	N1—K2—C12 ⁱⁱⁱ	85.10 (10)	N7—C11—K1	56.4 (2)
662	S2—K2—C12 ⁱⁱⁱ	135.02 (8)	N5-C11-K1	64.8 (2)
663	O3 ⁱⁱⁱ —K2—S1	113.47 (7)	N6-C12-C13	123.7 (4)
664	O4W—K2—S1	101.02 (10)	N6-C12-K2 ⁱⁱⁱ	56.0 (2)
665	O3W—K2—S1	69.16 (7)	C13—C12—K2 ⁱⁱⁱ	143.9 (3)
666	O1—K2—S1	22.03 (6)	N6-C12-H12	118.2
667	N6 ⁱⁱⁱ —K2—S1	79.88 (7)	C13—C12—H12	118.2
668	O4—K2—S1	131.84 (6)	К2 ^{ііі} —С12—Н12	74.7
669	O3—K2—S1	176.98 (7)	C14—C13—C12	115.2 (4)
670	N1—K2—S1	25.63 (7)	C14—C13—H13	122.4
671	S2—K2—S1	153.19 (4)	С12—С13—Н13	122.4
672	C12 ⁱⁱⁱ —K2—S1	67.56 (8)	N7—C14—C13	123.8 (5)
673	$O3^{iii}$ —K2—K1 ⁱ	140.99 (7)	N7—C14—H14	118.1
674	$O4W - K2 - K1^{i}$	81.88 (9)	C13—C14—H14	118.1
675	O3W—K2—K1 ⁱ	45.08 (7)	C20-C15-C16	120.1 (4)
676	O1—K2—K1 ⁱ	82.84 (7)	C20—C15—S2	120.3 (3)
677	$N6^{iii}$ — $K2$ — $K1^{i}$	153.33 (8)	C16—C15—S2	119.6 (3)
678	O4—K2—K1 ⁱ	39.76 (6)	C17—C16—C15	120.0 (4)
679	O3—K2—K1 ⁱ	86.84 (6)	С17—С16—Н16	120.0
680	$N1-K2-K1^{i}$	94.45 (7)	C15—C16—H16	120.0
681	S2—K2—K1 ⁱ	61.95 (3)	C16—C17—C18	121.0 (4)
682	C12 ⁱⁱⁱ —K2—K1 ⁱ	131.72 (8)	С16—С17—Н17	119.5
683	S1—K2—K1 ⁱ	92.52 (3)	С18—С17—Н17	119.5
684	O3 ⁱⁱⁱ —K2—H5W	111.4 (10)	N8—C18—C19	120.3 (4)
685	O4W—K2—H5W	130.2 (11)	N8—C18—C17	121.9 (4)
686	O3W—K2—H5W	17.7 (2)	C19—C18—C17	117.7 (4)
687	O1—K2—H5W	65.1 (9)	C20-C19-C18	121.6 (4)
688	N6 ⁱⁱⁱ —K2—H5W	128.6 (3)	С20—С19—Н19	119.2
689	O4—K2—H5W	93.3 (2)	C18—C19—H19	119.2
690	O3—K2—H5W	123.2 (7)	C19—C20—C15	119.5 (4)
691	N1—K2—H5W	39.1 (3)	С19—С20—Н20	120.2
692	S2—K2—H5W	102.5 (4)	С15—С20—Н20	120.2
693				
694	O2—S1—O1—K2	-107.96 (19)	C10-C5-C6-C7	0.0 (7)

695	N1—S1—O1—K2	18.6 (2)	S1-C5-C6-C7	176.6 (3)
696	C5—S1—O1—K2	132.83 (18)	C5—C6—C7—C8	-1.8 (7)
697	O4—S2—O3—K2 ⁱⁱⁱ	-161.4(2)	C6—C7—C8—C9	2.5 (7)
698	N5—S2—O3—K2 ⁱⁱⁱ	-40.7 (3)	C6—C7—C8—N4	179.0 (4)
699	C15—S2—O3—K2 ⁱⁱⁱ	81.7 (3)	C7—C8—C9—C10	-1.4 (7)
700	K2—S2—O3—K2 ⁱⁱⁱ	-126.1 (2)	N4—C8—C9—C10	-178.0(5)
701	O4—S2—O3—K2	-35.30 (18)	C8—C9—C10—C5	-0.3 (8)
702	N5—S2—O3—K2	85.46 (17)	C6—C5—C10—C9	1.0 (7)
703	C15—S2—O3—K2	-152.14 (15)	S1—C5—C10—C9	-175.6 (4)
704	O3—S2—O4—K1 ⁱ	143.5 (3)	C12—N6—C11—N7	-4.4 (6)
705	N5-S2-O4-K1 ⁱ	17.7 (3)	K2 ⁱⁱⁱ —N6—C11—N7	121.7 (4)
706	C15—S2—O4—K1 ⁱ	-99.4 (3)	C12—N6—C11—N5	174.9 (4)
707	K2—S2—O4—K1 ⁱ	107.0 (3)	K2 ⁱⁱⁱ —N6—C11—N5	-59.0 (5)
708	O3—S2—O4—K2	36.46 (19)	C12—N6—C11—K1	-88.0(7)
709	N5—S2—O4—K2	-89.27 (17)	K2 ⁱⁱⁱ —N6—C11—K1	38.2 (8)
710	C15—S2—O4—K2	153.58 (16)	C14—N7—C11—N6	4.7 (7)
711	O2—S1—N1—C1	-52.2 (4)	K1—N7—C11—N6	-148.8 (4)
712	01—S1—N1—C1	-177.3 (3)	C14—N7—C11—N5	-174.6 (4)
713	C5—S1—N1—C1	69.1 (3)	K1—N7—C11—N5	32.0 (4)
714	K2—S1—N1—C1	-161.3 (4)	C14—N7—C11—K1	153.4 (5)
715	O2—S1—N1—K2	109.16 (17)	S2—N5—C11—N6	-3.2 (6)
716	01—S1—N1—K2	-15.96 (17)	K1—N5—C11—N6	151.5 (4)
717	C5—S1—N1—K2	-129.60 (16)	S2—N5—C11—N7	176.2 (3)
718	O3—S2—N5—C11	54.6 (4)	K1—N5—C11—N7	-29.2 (4)
719	O4—S2—N5—C11	179.4 (3)	S2—N5—C11—K1	-154.7 (3)
720	C15—S2—N5—C11	-66.0 (4)	C11—N6—C12—C13	0.4 (6)
721	K2—S2—N5—C11	118.3 (3)	K2 ⁱⁱⁱ —N6—C12—C13	-136.1 (4)
722	O3—S2—N5—K1	-85.3 (3)	C11—N6—C12—K2 ⁱⁱⁱ	136.5 (4)
723	O4—S2—N5—K1	39.5 (3)	N6-C12-C13-C14	2.8 (7)
724	C15—S2—N5—K1	154.1 (2)	K2 ⁱⁱⁱ —C12—C13—C14	-74.1 (7)
725	K2—S2—N5—K1	-21.6 (3)	C11—N7—C14—C13	-1.0 (7)
726	C2—N2—C1—N3	4.1 (6)	K1—N7—C14—C13	140.9 (4)
727	C2—N2—C1—N1	-175.5 (4)	C12—C13—C14—N7	-2.5 (7)
728	C4—N3—C1—N2	-4.1 (6)	O3—S2—C15—C20	-20.6 (4)
729	C4—N3—C1—N1	175.5 (4)	O4—S2—C15—C20	-141.6 (3)
730	S1—N1—C1—N2	175.3 (3)	N5-S2-C15-C20	104.4 (4)
731	K2—N1—C1—N2	25.0 (6)	K2—S2—C15—C20	-85.0 (4)
732	S1—N1—C1—N3	-4.4 (5)	O3—S2—C15—C16	160.5 (3)
733	K2—N1—C1—N3	-154.7 (3)	O4—S2—C15—C16	39.5 (4)
734	C1—N2—C2—C3	0.0 (7)	N5-S2-C15-C16	-74.4 (4)
735	N2-C2-C3-C4	-3.6 (7)	K2—S2—C15—C16	96.1 (4)
736	C1—N3—C4—C3	-0.1 (6)	C20-C15-C16-C17	0.4 (6)
737	C2-C3-C4-N3	3.7 (7)	S2-C15-C16-C17	179.2 (3)
738	O2—S1—C5—C6	143.5 (4)	C15—C16—C17—C18	1.4 (7)
739	O1—S1—C5—C6	-94.0 (4)	C16—C17—C18—N8	176.3 (4)
740	N1—S1—C5—C6	17.7 (4)	C16—C17—C18—C19	-1.8 (7)
741	K2—S1—C5—C6	-46.4 (4)	N8—C18—C19—C20	-177.7 (4)
742	O2—S1—C5—C10	-39.9 (4)	C17—C18—C19—C20	0.5 (6)

743	O1—S1—C5—C10	82.6 (4)	C18—C19—C20—C15	1.3 (6)
744	N1—S1—C5—C10	-165.7 (4)	C16-C15-C20-C19	-1.7 (6)
745	K2—S1—C5—C10	130.1 (3)	S2—C15—C20—C19	179.4 (3)

746 Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1.

747 Hydrogen-bond geometry (Å, °)

B D-H···A	D—H	H···A	$D \cdots A$	D—H···A
9 O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.88(1)	1.93 (2)	2.799 (5)	167 (8)
$O1W - H2W - O4W^{i}$	0.88(1)	2.27 (4)	3.070 (6)	151 (6)
1 O2 <i>W</i> —H3 <i>W</i> ···O3 ⁱⁱⁱ	0.88 (1)	2.07 (2)	2.933 (5)	167 (6)
2 O2 <i>W</i> —H4 <i>W</i> …N2	0.88(1)	1.97 (2)	2.828 (5)	167 (6)
3 O3 <i>W</i> —H5 <i>W</i> …N1	0.87 (1)	2.02 (2)	2.872 (5)	164 (5)
$14 O3W - H6W \cdots N5^{i}$	0.87(1)	1.98 (1)	2.835 (5)	166 (4)
$O4W - H7W - O2W^{iv}$	0.88(1)	2.05 (2)	2.919 (6)	169 (7)
$6 O4W - H8W - O4W^{v}$	0.88 (1)	2.05 (2)	2.920 (8)	168 (9)
17 N4—H1 N ····N4 ^{vi}	0.87 (7)	2.50 (6)	3.054 (9)	122 (5)
N4—H2 N ···O2 ^{vii}	0.93 (7)	2.57 (7)	3.431 (7)	153 (5)
9 N8—H3 <i>N</i> ···O2 ^{viii}	0.87 (5)	2.38 (5)	3.046 (5)	134 (4)
0 N8—H3 <i>N</i> ····N3 ^{viii}	0.87 (5)	2.61 (5)	3.283 (6)	135 (4)

761 Symmetry codes: (i) -x, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x-1, y, z; (v) -x-1, -y+2, -z+1; (vi) -x-1, -y, -z; (vii) x, y-1, z; (viii) x, y, z+1.

762 **(IV)**

763 Crystal data

764 C₂₆H₃₂N₆NaO_{14.50}S₃

- 765 $M_r = 779.74$
- 766 Monoclinic, $P2_1/c$

 $_{767}$ a = 12.7688 (1) Å

- 768 b = 16.9040(1) Å
- 769 c = 15.7411(1) Å
- 770 $\beta = 107.609 (1)^{\circ}$
- 771 V = 3238.42 (4) Å³
- 772 Z = 4

773 Data collection

- 774 XtaLAB AFC11 (RCD3) diffractometer
- 775 Radiation source: rotating anode
- 776 ω scans
- 777 Absorption correction: multi-scan *CrysAlis PRO* 1.171.39.34b (Rigaku Oxford Diffraction, 2017) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

778 Refinement

779 Refinement on F^2

780 Least-squares matrix: full

781 $R[F^2 > 2\sigma(F^2)] = 0.028$

F(000) = 1620 $D_x = 1.599 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 35404 reflections $\theta = 3.6-70.3^{\circ}$ $\mu = 2.95 \text{ mm}^{-1}$ T = 100 KBlock, red $0.12 \times 0.08 \times 0.04 \text{ mm}$

 $T_{\min} = 0.615, T_{\max} = 1.000$ 59125 measured reflections 5913 independent reflections 5686 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 68.3^{\circ}, \theta_{\text{min}} = 3.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -20 \rightarrow 20$ $l = -18 \rightarrow 17$

 $wR(F^2) = 0.075$ S = 1.05 5913 reflections

782	537 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0364P)^2 + 2.347P]$
783	13 restraints	where $P = (F_0^2 + 2F_c^2)/3$
784	Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.001$
	II stores the stad has a maintaine of independent	$h = -0.26 - h^{-3}$

H atoms treated by a mixture of independent 785 and constrained refinement

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-1}$ $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details 786

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 787 covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2) 788

						0(1)
789		x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Ucc. (<1)
790	Na1	-0.36434 (5)	0.35305 (4)	0.00412 (4)	0.02103 (14)	
791	S 1	0.25698 (3)	0.53159 (2)	0.56811 (2)	0.01894 (9)	
792	S2	0.28977 (3)	0.35439 (2)	0.12953 (2)	0.01723 (9)	
793	S3	0.34948 (3)	0.66079 (2)	0.22267 (2)	0.01823 (9)	
794	O1	0.30756 (9)	0.60882 (7)	0.58033 (7)	0.0231 (2)	
795	O2	0.25734 (9)	0.48924 (7)	0.64777 (7)	0.0232 (2)	
796	O1W	-0.35372 (9)	0.22020 (7)	0.04238 (8)	0.0218 (2)	
797	O3	-0.16759 (8)	0.36126 (6)	0.04200 (7)	0.0209 (2)	
798	O2W	-0.39276 (13)	0.36471 (9)	0.15242 (9)	0.0366 (3)	
799	O4	0.23184 (9)	0.28982 (6)	0.15504 (8)	0.0242 (2)	
800	O3W	-0.56243 (11)	0.33362 (8)	-0.06717 (10)	0.0324 (3)	
801	05	0.29466 (9)	0.35183 (7)	0.03839 (7)	0.0247 (3)	
802	O4W	-0.40375 (13)	0.48626 (9)	-0.02427 (12)	0.0467 (4)	
803	H7W	-0.3673 (17)	0.5308 (9)	-0.0208 (17)	0.056*	
804	H8W	-0.449 (3)	0.501 (2)	0.006 (3)	0.056*	0.5
805	H14W	-0.463 (2)	0.499 (2)	-0.068 (2)	0.056*	0.5
806	O5W	-0.6489 (2)	0.33037 (15)	-0.24880 (18)	0.0323 (5)	0.5
807	H9W	-0.677 (3)	0.2873 (16)	-0.279 (2)	0.039*	0.5
808	H10W	-0.590 (2)	0.336 (2)	-0.267 (3)	0.039*	0.5
809	O6W	-0.3558 (3)	0.52405 (18)	0.16139 (18)	0.0459 (8)	0.5
810	H11W	-0.366 (2)	0.5317 (15)	0.2141 (10)	0.055*	
811	H12W	-0.367 (4)	0.4725 (8)	0.160 (3)	0.055*	0.5
812	O7W	-0.4311 (2)	0.54771 (18)	0.19266 (18)	0.0392 (7)	0.5
813	H13W	-0.451 (3)	0.566 (3)	0.2374 (18)	0.047*	0.5
814	O6	0.40067 (8)	0.36455 (6)	0.19268 (7)	0.0200 (2)	
815	07	0.36235 (9)	0.69334 (7)	0.14107 (7)	0.0228 (2)	
816	08	0.44918 (9)	0.62573 (7)	0.28078 (8)	0.0297 (3)	
817	09	0.29864 (9)	0.71689 (7)	0.26880 (7)	0.0241 (2)	
818	N1	0.13018 (10)	0.53245 (8)	0.50886 (8)	0.0193 (3)	
819	N2	0.14382 (11)	0.63967 (8)	0.41387 (9)	0.0205 (3)	
820	N3	-0.02496 (10)	0.58329 (8)	0.41174 (9)	0.0202 (3)	
821	N4	0.47872 (12)	0.31848 (9)	0.37342 (10)	0.0228 (3)	
822	N5	0.04786 (10)	0.34343 (7)	0.02685 (8)	0.0165 (3)	
823	N6	-0.02618 (10)	0.29254 (7)	-0.01560 (8)	0.0173 (3)	

824	C1	0.08718 (12)	0.58593 (9)	0.44525 (10)	0.0185 (3)
825	C2	0.08701 (13)	0.69124 (10)	0.35332 (10)	0.0216 (3)
826	H2	0.1270	0.7293	0.3313	0.026*
827	C3	-0.02726 (13)	0.69278 (10)	0.32031 (11)	0.0232 (3)
828	Н3	-0.0650	0.7314	0.2784	0.028*
829	C4	-0.08209 (13)	0.63587 (10)	0.35134 (11)	0.0238 (3)
830	H4	-0.1600	0.6334	0.3304	0.029*
831	C5	0.32606 (12)	0.47095 (9)	0.51081 (10)	0.0197 (3)
832	C6	0.35300 (12)	0.49962 (10)	0.43696 (10)	0.0223 (3)
833	H6	0.3365	0.5527	0.4176	0.027*
834	C7	0.40425 (12)	0.44943 (10)	0.39231 (10)	0.0219 (3)
835	H7	0.4236	0.4677	0.3420	0.026*
836	C8	0.42703 (12)	0.37216 (10)	0.42193 (10)	0.0205 (3)
837	C9	0.40333 (13)	0.34437 (10)	0.49661 (11)	0.0221 (3)
838	Н9	0.4223	0.2919	0.5171	0.027*
839	C10	0.35154 (12)	0.39416 (10)	0.54122 (10)	0.0218 (3)
840	H10	0.3336	0.3759	0.5922	0.026*
841	C11	0.01948 (12)	0.40012 (9)	0.07444 (10)	0.0159 (3)
842	C12	-0.09441 (12)	0.41261 (9)	0.07379 (9)	0.0175 (3)
843	C13	-0.12211 (12)	0.48735 (9)	0.10541 (10)	0.0198 (3)
844	H13	-0.1955	0.4971	0.1051	0.024*
845	C14	-0.04523 (12)	0.54336 (9)	0.13538 (10)	0.0188 (3)
846	H14	-0.0671	0.5934	0.1516	0.023*
847	C15	0.06970 (12)	0.53059 (9)	0.14404 (10)	0.0166 (3)
848	C16	0.10495 (12)	0.45694 (9)	0.11881 (9)	0.0157 (3)
849	C17	0.22061 (12)	0.44559 (9)	0.13890 (10)	0.0168 (3)
850	C18	0.29200 (12)	0.50782 (9)	0.17202 (10)	0.0186 (3)
851	H18	0.3687	0.4999	0.1835	0.022*
852	C19	0.25427 (12)	0.58168 (9)	0.18898 (10)	0.0178 (3)
853	C20	0.14397 (12)	0.59221 (9)	0.17777 (10)	0.0178 (3)
854	H20	0.1182	0.6413	0.1929	0.021*
855	C21	-0.00296 (12)	0.23542 (9)	-0.07255 (10)	0.0178 (3)
856	C22	-0.09205 (13)	0.19251 (9)	-0.12561 (10)	0.0204 (3)
857	H22	-0.1643	0.2031	-0.1234	0.024*
858	C23	-0.07414 (14)	0.13423 (10)	-0.18169 (11)	0.0237 (3)
859	H23	-0.1343	0.1047	-0.2182	0.028*
860	C24	0.03150 (14)	0.11899 (10)	-0.18464 (11)	0.0243 (3)
861	H24	0.0438	0.0786	-0.2225	0.029*
862	C25	0.11952 (14)	0.16297 (10)	-0.13190 (11)	0.0242 (3)
863	H25	0.1916	0.1526	-0.1346	0.029*
864	C26	0.10358 (13)	0.22174 (10)	-0.07551 (10)	0.0211 (3)
865	H26	0.1637	0.2519	-0.0398	0.025*
866	H1W	-0.349 (2)	0.2133 (14)	0.0986 (18)	0.049 (7)*
867	H2W	-0.299 (2)	0.1888 (15)	0.0354 (16)	0.052 (7)*
868	H3W	-0.360 (2)	0.3264 (17)	0.1861 (18)	0.057 (8)*
869	H4W	-0.461 (3)	0.3655 (19)	0.161 (2)	0.089 (11)*
870	H5W	-0.607 (2)	0.3395 (16)	-0.0361 (19)	0.061 (8)*
871	H6W	-0.591 (3)	0.365 (2)	-0.109 (2)	0.086 (11)*

872	H1N	-0.0943 (19)	0.2989 (13)	-0.0086 (14)	0.039 (6)*
873	H2N	0.4668 (19)	0.2671 (15)	0.3875 (16)	0.046 (6)*
874	H3N	0.4510 (18)	0.3275 (13)	0.3137 (16)	0.036 (6)*
875	H4N	0.552 (2)	0.3289 (13)	0.3887 (14)	0.036 (6)*
876	H5N	-0.0568 (18)	0.5484 (13)	0.4332 (14)	0.034 (6)*

877 Atomic displacement parameters $(Å^2)$

878		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
879	Nal	0.0167 (3)	0.0247 (3)	0.0222 (3)	0.0009 (2)	0.0066 (2)	0.0023 (2)
880	S 1	0.01371 (18)	0.0258 (2)	0.01688 (18)	0.00205 (14)	0.00401 (14)	0.00107 (14)
881	S2	0.01208 (17)	0.02132 (19)	0.01829 (19)	0.00029 (13)	0.00458 (14)	0.00044 (14)
882	S3	0.01672 (18)	0.02092 (19)	0.01605 (18)	-0.00479 (14)	0.00343 (14)	-0.00034 (14)
883	01	0.0168 (5)	0.0278 (6)	0.0235 (6)	-0.0008 (4)	0.0044 (4)	-0.0022 (5)
884	O2	0.0188 (5)	0.0335 (6)	0.0174 (5)	0.0043 (5)	0.0054 (4)	0.0033 (5)
885	O1W	0.0204 (6)	0.0252 (6)	0.0199 (6)	0.0006 (5)	0.0061 (4)	0.0006 (5)
886	03	0.0146 (5)	0.0233 (6)	0.0249 (6)	-0.0033 (4)	0.0061 (4)	-0.0030 (4)
887	O2W	0.0409 (8)	0.0400 (8)	0.0350 (7)	0.0161 (6)	0.0208 (6)	0.0089 (6)
888	O4	0.0180 (5)	0.0200 (5)	0.0352 (6)	-0.0002 (4)	0.0090 (5)	0.0039 (5)
889	O3W	0.0246 (6)	0.0369 (7)	0.0407 (8)	0.0063 (5)	0.0171 (6)	0.0062 (6)
890	05	0.0170 (5)	0.0378 (7)	0.0201 (6)	0.0016 (5)	0.0069 (4)	-0.0037 (5)
891	O4W	0.0522 (9)	0.0349 (7)	0.0683 (11)	0.0142 (7)	0.0413 (8)	0.0217 (7)
892	O5W	0.0279 (13)	0.0334 (14)	0.0360 (14)	-0.0018 (10)	0.0103 (11)	-0.0034 (11)
893	O6W	0.070 (2)	0.0441 (16)	0.0218 (13)	0.0273 (15)	0.0117 (13)	0.0043 (12)
894	O7W	0.0281 (14)	0.0483 (17)	0.0362 (15)	0.0008 (12)	0.0021 (11)	0.0159 (13)
895	06	0.0129 (5)	0.0250 (6)	0.0204 (5)	0.0012 (4)	0.0026 (4)	0.0015 (4)
896	07	0.0257 (6)	0.0247 (6)	0.0198 (6)	-0.0074 (5)	0.0098 (5)	-0.0014 (4)
897	O8	0.0205 (6)	0.0305 (6)	0.0299 (6)	-0.0045 (5)	-0.0047 (5)	0.0029 (5)
898	09	0.0250 (6)	0.0269 (6)	0.0223 (6)	-0.0072 (5)	0.0101 (5)	-0.0067 (5)
899	N1	0.0130 (6)	0.0250 (7)	0.0192 (6)	0.0018 (5)	0.0039 (5)	0.0018 (5)
900	N2	0.0174 (6)	0.0246 (7)	0.0192 (6)	0.0006 (5)	0.0050 (5)	0.0011 (5)
901	N3	0.0142 (6)	0.0266 (7)	0.0201 (7)	0.0013 (5)	0.0058 (5)	0.0025 (5)
902	N4	0.0166 (7)	0.0317 (8)	0.0209 (7)	0.0058 (6)	0.0066 (6)	0.0019 (6)
903	N5	0.0158 (6)	0.0176 (6)	0.0149 (6)	-0.0007(5)	0.0028 (5)	0.0023 (5)
904	N6	0.0139 (6)	0.0202 (6)	0.0172 (6)	-0.0010 (5)	0.0038 (5)	-0.0005 (5)
905	C1	0.0158 (7)	0.0226 (8)	0.0173 (7)	0.0023 (6)	0.0053 (6)	-0.0031 (6)
906	C2	0.0233 (8)	0.0234 (8)	0.0191 (8)	0.0006 (6)	0.0078 (6)	-0.0010 (6)
907	C3	0.0225 (8)	0.0274 (8)	0.0193 (8)	0.0058 (7)	0.0057 (6)	0.0030 (6)
908	C4	0.0168 (8)	0.0331 (9)	0.0202 (8)	0.0056 (6)	0.0040 (6)	0.0021 (7)
909	C5	0.0114 (7)	0.0282 (8)	0.0183 (7)	0.0010 (6)	0.0028 (6)	0.0003 (6)
910	C6	0.0180 (7)	0.0275 (8)	0.0202 (8)	0.0030 (6)	0.0042 (6)	0.0036 (6)
911	C7	0.0163 (7)	0.0316 (9)	0.0177 (7)	0.0027 (6)	0.0050 (6)	0.0039 (6)
912	C8	0.0115 (7)	0.0304 (9)	0.0186 (8)	0.0032 (6)	0.0032 (6)	0.0002 (6)
913	C9	0.0174 (7)	0.0271 (8)	0.0214 (8)	0.0041 (6)	0.0052 (6)	0.0039 (6)
914	C10	0.0159 (7)	0.0304 (9)	0.0190 (8)	0.0014 (6)	0.0050 (6)	0.0035 (6)
915	C11	0.0144 (7)	0.0181 (7)	0.0145 (7)	0.0001 (6)	0.0036 (5)	0.0024 (6)
916	C12	0.0155 (7)	0.0224 (8)	0.0140 (7)	-0.0009 (6)	0.0035 (6)	0.0024 (6)
917	C13	0.0150 (7)	0.0251 (8)	0.0203 (8)	0.0015 (6)	0.0069 (6)	0.0004 (6)

918	C14	0.0189 (7)	0.0205 (8)	0.0179 (7)	0.0021 (6)	0.0067 (6)	0.0009 (6)
919	C15	0.0165 (7)	0.0205 (7)	0.0125 (7)	-0.0002 (6)	0.0041 (6)	0.0030 (6)
920	C16	0.0153 (7)	0.0202 (7)	0.0117 (7)	-0.0006 (6)	0.0045 (6)	0.0033 (6)
921	C17	0.0157 (7)	0.0207 (7)	0.0141 (7)	-0.0002 (6)	0.0048 (6)	0.0026 (6)
922	C18	0.0148 (7)	0.0240 (8)	0.0161 (7)	-0.0016 (6)	0.0034 (6)	0.0037 (6)
923	C19	0.0175 (7)	0.0212 (7)	0.0131 (7)	-0.0032 (6)	0.0024 (6)	0.0029 (6)
924	C20	0.0199 (7)	0.0189 (7)	0.0147 (7)	-0.0010 (6)	0.0051 (6)	0.0014 (6)
925	C21	0.0201 (7)	0.0175 (7)	0.0155 (7)	0.0010 (6)	0.0049 (6)	0.0021 (6)
926	C22	0.0189 (7)	0.0225 (8)	0.0196 (8)	-0.0017 (6)	0.0055 (6)	0.0016 (6)
927	C23	0.0256 (8)	0.0234 (8)	0.0209 (8)	-0.0058 (6)	0.0051 (7)	-0.0024 (6)
928	C24	0.0312 (9)	0.0229 (8)	0.0187 (8)	0.0022 (7)	0.0077 (7)	-0.0019 (6)
929	C25	0.0208 (8)	0.0294 (9)	0.0225 (8)	0.0046 (7)	0.0065 (6)	-0.0006 (7)
930	C26	0.0179 (7)	0.0247 (8)	0.0193 (8)	0.0003 (6)	0.0034 (6)	-0.0009 (6)

931 Geometric parameters (Å, °)

Na1—O1W	2.3184 (13)	N5—C11	1.3322 (19)
Na1—O4W	2.3211 (15)	N6	1.409 (2)
Na1—O3	2.4042 (12)	N6—H1N	0.92 (2)
Na1—O7 ⁱ	2.4237 (12)	C2—C3	1.393 (2)
Na1—O3W	2.4592 (14)	С2—Н2	0.9500
Na1—O2W	2.4764 (14)	C3—C4	1.364 (2)
S1—O2	1.4428 (11)	С3—Н3	0.9500
S1—O1	1.4433 (12)	C4—H4	0.9500
S1—N1	1.6055 (13)	C5—C10	1.388 (2)
S1—C5	1.7674 (16)	C5—C6	1.395 (2)
S2—O4	1.4419 (11)	C6—C7	1.386 (2)
S2—O5	1.4554 (12)	С6—Н6	0.9500
S2—O6	1.4735 (11)	C7—C8	1.388 (2)
S2—C17	1.8048 (15)	С7—Н7	0.9500
S3—O8	1.4506 (12)	C8—C9	1.382 (2)
S3—O7	1.4516 (11)	C9—C10	1.385 (2)
S3—O9	1.4605 (12)	С9—Н9	0.9500
S3—C19	1.7769 (15)	C10—H10	0.9500
O1W—H1W	0.88 (3)	C11—C16	1.463 (2)
O1W—H2W	0.91 (3)	C11—C12	1.467 (2)
O3—C12	1.2626 (18)	C12—C13	1.441 (2)
O2W—H3W	0.86 (3)	C13—C14	1.343 (2)
O2W—H4W	0.92 (4)	C13—H13	0.9500
O3W—H5W	0.86 (3)	C14—C15	1.448 (2)
O3W—H6W	0.83 (4)	C14—H14	0.9500
O4W—H7W	0.879 (10)	C15—C20	1.401 (2)
O4W—H8W	0.883 (10)	C15—C16	1.421 (2)
O4W—H14W	0.886 (10)	C16—C17	1.427 (2)
O5W—H9W	0.883 (10)	C17—C18	1.386 (2)
O5W—H10W	0.885 (10)	C18—C19	1.393 (2)
O6W—H11W	0.886 (10)	C18—H18	0.9500
O6W—H12W	0.881 (10)	C19—C20	1.377 (2)
	Na1-O1W Na1-O3 Na1-O3 Na1-O3W Na1-O2W S1-O2 S1-O1 S1-N1 S1-C5 S2-O4 S2-O5 S2-O6 S2-C17 S3-O8 S3-O7 S3-O9 S3-C19 O1W-H1W O1W-H2W O3-C12 O2W-H3W O2W-H4W O3W-H6W O4W-H7W O4W-H14W O5W-H0W O4W-H14W O5W-H10W O6W-H11W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

964	O7W—H13W	0.875 (10)	C20—H20	0.9500
965	O7—Na1 ⁱ	2.4237 (12)	C21—C22	1.394 (2)
966	N1—C1	1.337 (2)	C21—C26	1.395 (2)
967	N2—C2	1.333 (2)	C22—C23	1.387 (2)
968	N2—C1	1.345 (2)	C22—H22	0.9500
969	N3—C4	1.344 (2)	C23—C24	1.388 (2)
970	N3—C1	1.369 (2)	C23—H23	0.9500
971	N3—H5N	0.84(2)	C24—C25	1 393 (2)
972	N4—C8	1.465(2)	C24—H24	0.9500
073	N4—H2N	0.92(3)	$C_{25} - C_{26}$	1.388(2)
974	N4—H3N	0.92(3)	C25—H25	0.9500
975	N4—H4N	0.91(2)	C26—H26	0.9500
975	N5N6	1.3031(18)	020 1120	0.9500
077	113 110	1.5051 (10)		
978	O1W—Na1—O4W	169 11 (5)	C4 - C3 - C2	116 51 (15)
970	O1W—Na1—O3	90.96 (4)	C4 - C3 - H3	121 7
020	04W Na1 03	98.12 (5)	$C^2 - C^3 - H^3$	121.7
0.01	$01W_{Na1}_{07i}$	96.12 (5) 85.13 (4)	$N_3 - C_4 - C_3$	119 48 (15)
001	$O4W_Na1_O7^i$	$101 \ 30 \ (5)$	$N_3 - C_4 - H_4$	120.3
902	$O_3 N_{21} O_7^i$	86.81 (4)	$C_3 C_4 H_4$	120.3
004	$01W_Na1_03W$	87 73 (5)	C_{10} C_{5} C_{6}	120.3 121.41(15)
904 005	$O_{1}W = Na1 = O_{2}W$	84.75 (6)	C10 - C5 - C0	121.41(13) 117.89(12)
905	$O_3 N_{21} O_3 W$	166.07 (5)	$C_{10} = C_{5} = S_{1}$	117.89(12) 120.71(12)
986	O_{7i}^{i} Na1 O_{7i}^{i} Wa1	100.97(3)	$C_{0} = C_{0} = S_{1}$	120.71(12) 118.00(15)
967	$O_1 W = N_{01} O_2 W$	80.17(5)	$C_{7} = C_{0} = C_{3}$	120.6
966	$O_1 W = Na1 = O_2 W$	81.14(5)	$C_{1} = C_{0} = 110$	120.0
989	$O_{4} W = Na1 = O_{2} W$	91.10(0) 101 64 (5)	C_{5} C_{6} C_{7} C_{8}	120.0 110.27(15)
990	$O_{7^{i}}$ Nal $O_{7^{i}}$ Nal	163.04(5)	$C_{0} = C_{1} = C_{0}$	119.27 (13)
991	$O_{1} = Na_{1} = O_{2} W$	103.94(3)	$C_{0} = C_{1} = H_{1}$	120.4
992	$O_2 = S_1 = O_2 W$	90.97(3) 116 71 (7)	$C_{0} = C_{1} = C_{1}$	120.4
995	02 - 51 - 01	10.71(7) 104.29(7)	$C_{0} = C_{0} = C_{1}$	121.00(15) 118.81(15)
994	01N1	104.29(7) 113.65(7)	$C_{3} = C_{3} = N_{4}$	110.01(13) 110.30(14)
995	$O_2 = S_1 = C_5$	106 55 (7)	$C_{1} = C_{0} = C_{1}$	119.50(14) 119.06(15)
990	$01 \ 81 \ C5$	100.55(7) 108.68(7)	C_{8} C_{9} H_{9}	120.5
337	N1-S1-C5	106.06(7)	$C_{10} - C_{9} - H_{9}$	120.5
990	04 82 05	100.20(7) 115 51(7)	$C_{10} = C_{10} = C_{10}$	120.3 110.43(15)
1000	04 - 52 - 05 04 - 52 - 06	113.31(7) 111.69(7)	$C_{9} = C_{10} = C_{10}$	120.3
1000	$05 \ 82 \ 06$	110.45 (6)	C_{5} C_{10} H_{10}	120.3
1001	03 - 52 - 00 04 - 82 - 017	10.45(0) 108.60(7)	N5-C11-C16	116 76 (13)
1002	05-82-C17	105.00(7)	N_{5} C_{11} C_{12}	12251(13)
1003	05-52-C17	103.90(7) 103.85(7)	$C_{16} - C_{11} - C_{12}$	122.31(13) 120.25(13)
1004	08 - 52 - 07	103.03(7) 113.59(7)	03 - C12 - C13	120.23(13) 120.68(13)
1005	08 - 53 - 07	113.39(7) 112.90(7)	03 - C12 - C13	120.00(13) 121.14(14)
1000	07 - 83 - 09	112.90(7) 112.34(7)	C_{13} C_{12} C_{11}	121.14(14) 118.06(13)
1002	08 - 53 - 09	112.3 + (7) 105 75 (7)	C13 - C12 - C11 C14 - C13 - C12	120.66(13)
1000	07 - S3 - C19	105.75 (7)	C14-C13-H13	120.00 (14)
1019	0^{-3}	105.70(7) 105.67(7)	C_{17} C_{13} C	119.7
1010	0_{7} 0_{7} 0_{7} 0_{1} 0_{1} 0_{1} W W	103.07(7) 111.9(16)	C_{12} C_{13} C_{13} C_{15}	117./ 122.71.(14)
TUTT		111.8 (10)	013-014-013	122.71 (14)

1012	Na1—O1W—H2W	121.3 (16)	C13—C14—H14	118.6
1013	H1W—O1W—H2W	103 (2)	C15—C14—H14	118.6
1014	C12—O3—Na1	136.93 (10)	C20-C15-C16	121.48 (13)
1015	Na1—O2W—H3W	110.0 (18)	C20-C15-C14	118.39 (14)
1016	Na1—O2W—H4W	124 (2)	C16—C15—C14	120.13 (13)
1017	H3W—O2W—H4W	102 (3)	C15—C16—C17	116.75 (13)
1018	Na1—O3W—H5W	119.2 (19)	C15—C16—C11	117.08 (13)
1019	Na1—O3W—H6W	115 (2)	C17—C16—C11	126.18 (13)
1020	H5W—O3W—H6W	100 (3)	C18—C17—C16	120.02 (14)
1021	Na1—O4W—H7W	137.7 (16)	C18—C17—S2	113.36 (11)
1022	Na1—O4W—H8W	108 (3)	C16—C17—S2	126.58 (11)
1023	H7W—O4W—H8W	98 (2)	C17 - C18 - C19	121.74 (14)
1023	Na1—O4W—H14W	118 (3)	C17—C18—H18	119.1
1025	H7W - O4W - H14W	99 (2)	C19—C18—H18	119.1
1025	H9W - 05W - H10W	99 (2)	C_{20} C_{19} C_{18}	119 40 (14)
1020	$H11W \longrightarrow 06W \longrightarrow H12W$	96 (2)	$C_{20} = C_{19} = S_{3}$	121.46(12)
1027	S_{3} O_{7} $N_{2}1^{i}$	13842(7)	$C_{18} - C_{19} - S_{3}$	121.10(12) 119.13(11)
1020	C1 - N1 - S1	123.67(11)	$C_{10} = C_{10} = C_{10}$	119.13(11) 120.10(14)
1029	$C_1 = N_1 = S_1$	123.07 (11)	C19 - C20 - C13	120.10 (14)
1030	$C_2 = N_2 = C_1$	117.09(13) 122.12(14)	$C_{19} - C_{20} - H_{20}$	119.9
1031	C4 = N3 = C1 C4 = N3 = H5N	122.12(14) 121.4(15)	$C_{13} - C_{20} - 1120$	119.9 121.42(14)
1032	$C_1 = N_2 = H_5 N_1$	121.4(15)	$C_{22} = C_{21} = C_{20}$	121.42(14) 116.56(13)
1033	$C_1 = N_2 = H_2 N_1$	100.4(15)	$C_{22} = C_{21} = N_0$	110.50(13) 122.01(14)
1034	C_{0} N4 H2N	109.0(13) 100.8(14)	$C_{20} = C_{21} = N_0$	122.01(14) 110.28(15)
1035	Co-IN4-IIJIN	109.0(14)	$C_{23} = C_{22} = C_{21}$	119.20 (13)
1036	$\Pi Z I M = I M = \Pi J M$	111(2) 100.2(14)	$C_{23} - C_{22} - H_{22}$	120.4
1037	C_0 N4 H_4 N	109.5(14)	$C_{21} - C_{22} - H_{22}$	120.4
1038	H2N—N4—H4N	111(2)	$C_{22} = C_{23} = C_{24}$	120.15 (15)
1039	H3N—N4—H4N	100.8 (19)	$C_{22} - C_{23} - H_{23}$	119.9
1040	$N_0 - N_0 - C_1 I$	118.99 (13)	$C_{24} - C_{23} - H_{23}$	119.9
1041	$N_{2} = N_{0} = C_{21}$	121.27(13)	$C_{23} - C_{24} - C_{25}$	119.87 (15)
1042	N5—N6—HIN	115.4 (14)	C23—C24—H24	120.1
1043	C2I—N6—HIN	123.2 (14)	C25—C24—H24	120.1
1044	NI-CI-N2	125.95 (14)	C26—C25—C24	121.02 (15)
1045	NI-CI-N3	114.28 (14)	C26—C25—H25	119.5
1046	N2—C1—N3	119.77 (14)	C24—C25—H25	119.5
1047	N2—C2—C3	124.12 (15)	C25—C26—C21	118.25 (14)
1048	N2—C2—H2	117.9	C25—C26—H26	120.9
1049	C3—C2—H2	117.9	C21—C26—H26	120.9
1050		/		
1051	$O8$ — $S3$ — $O7$ — $Na1^{1}$	81.07 (11)	C13—C14—C15—C20	-178.66 (14)
1052	O9—S3—O7—Na1 ¹	-149.26 (9)	C13—C14—C15—C16	1.2 (2)
1053	C19—S3—O7—Na1 ¹	-34.46 (12)	C20—C15—C16—C17	6.9 (2)
1054	O2—S1—N1—C1	156.92 (13)	C14—C15—C16—C17	-172.92 (13)
1055	01—S1—N1—C1	28.75 (15)	C20—C15—C16—C11	-172.79 (13)
1056	C5—S1—N1—C1	-90.72 (14)	C14—C15—C16—C11	7.4 (2)
1057	C11—N5—N6—C21	174.83 (13)	N5—C11—C16—C15	159.68 (13)
1058	S1—N1—C1—N2	8.8 (2)	C12—C11—C16—C15	-12.5 (2)
1059	S1—N1—C1—N3	-170.92 (11)	N5-C11-C16-C17	-20.0(2)

1060	C2—N2—C1—N1	-176.66 (15)	C12—C11—C16—C17	167.76 (14)
1061	C2—N2—C1—N3	3.0 (2)	C15—C16—C17—C18	-7.1 (2)
1062	C4—N3—C1—N1	175.88 (14)	C11—C16—C17—C18	172.62 (14)
1063	C4—N3—C1—N2	-3.8 (2)	C15—C16—C17—S2	170.58 (11)
1064	C1—N2—C2—C3	-0.2(2)	C11—C16—C17—S2	-9.7 (2)
1065	N2-C2-C3-C4	-1.9 (2)	O4—S2—C17—C18	141.14 (11)
1066	C1—N3—C4—C3	1.6 (2)	O5—S2—C17—C18	-94.23 (12)
1067	C2—C3—C4—N3	1.1 (2)	O6—S2—C17—C18	22.15 (13)
1068	O2—S1—C5—C10	9.38 (14)	O4—S2—C17—C16	-36.66 (15)
1069	O1—S1—C5—C10	135.92 (12)	O5—S2—C17—C16	87.97 (14)
1070	N1—S1—C5—C10	-101.41 (13)	O6—S2—C17—C16	-155.65 (13)
1071	O2—S1—C5—C6	-171.14 (12)	C16—C17—C18—C19	1.8 (2)
1072	O1—S1—C5—C6	-44.60 (14)	S2-C17-C18-C19	-176.12 (11)
1073	N1—S1—C5—C6	78.07 (14)	C17—C18—C19—C20	4.0 (2)
1074	C10-C5-C6-C7	1.3 (2)	C17—C18—C19—S3	-174.87 (11)
1075	S1—C5—C6—C7	-178.11 (12)	O8—S3—C19—C20	143.56 (13)
1076	C5—C6—C7—C8	0.2 (2)	O7—S3—C19—C20	-95.67 (13)
1077	C6—C7—C8—C9	-2.2 (2)	O9—S3—C19—C20	23.63 (14)
1078	C6—C7—C8—N4	178.48 (14)	O8—S3—C19—C18	-37.62 (14)
1079	C7—C8—C9—C10	2.5 (2)	O7—S3—C19—C18	83.15 (13)
1080	N4—C8—C9—C10	-178.13 (14)	O9—S3—C19—C18	-157.55 (12)
1081	C8—C9—C10—C5	-0.9(2)	C18—C19—C20—C15	-4.2 (2)
1082	C6—C5—C10—C9	-1.0 (2)	S3—C19—C20—C15	174.65 (11)
1083	S1—C5—C10—C9	178.47 (12)	C16—C15—C20—C19	-1.4 (2)
1084	N6—N5—C11—C16	-178.41 (12)	C14—C15—C20—C19	178.45 (13)
1085	N6—N5—C11—C12	-6.4 (2)	N5—N6—C21—C22	-169.89 (13)
1086	Na1—O3—C12—C13	6.3 (2)	N5—N6—C21—C26	10.6 (2)
1087	Na1—O3—C12—C11	-169.80 (10)	C26—C21—C22—C23	0.9 (2)
1088	N5-C11-C12-O3	13.8 (2)	N6-C21-C22-C23	-178.63 (14)
1089	C16—C11—C12—O3	-174.40 (13)	C21—C22—C23—C24	0.1 (2)
1090	N5-C11-C12-C13	-162.36 (14)	C22—C23—C24—C25	-0.7 (2)
1091	C16—C11—C12—C13	9.4 (2)	C23—C24—C25—C26	0.5 (3)
1092	O3—C12—C13—C14	-176.90 (14)	C24—C25—C26—C21	0.4 (2)
1093	C11—C12—C13—C14	-0.7 (2)	C22—C21—C26—C25	-1.1 (2)
1094	C12—C13—C14—C15	-4.7 (2)	N6-C21-C26-C25	178.40 (14)

1095 Symmetry code: (i) -x, -y+1, -z.

1096 Hydrogen-bond geometry (Å, °)

1097	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
1098	O1 <i>W</i> —H1 <i>W</i> ···O9 ⁱⁱ	0.88 (3)	1.99 (3)	2.8404 (16)	163 (2)
1099	O1 <i>W</i> —H2 <i>W</i> ···O1 ⁱⁱ	0.91 (3)	2.24 (3)	2.8830 (17)	127 (2)
1100	O1 <i>W</i> —H2 <i>W</i> ···N2 ⁱⁱ	0.91 (3)	2.07 (3)	2.8972 (18)	150 (2)
1101	O2 <i>W</i> —H3 <i>W</i> ···O9 ⁱⁱ	0.86 (3)	2.05 (3)	2.8852 (18)	163 (2)
1102	O2 <i>W</i> —H4 <i>W</i> ···O6 ⁱⁱⁱ	0.92 (4)	1.98 (4)	2.8932 (18)	174 (3)
1103	O3 <i>W</i> —H5 <i>W</i> ···O5 ⁱⁱⁱ	0.86 (3)	1.98 (3)	2.8320 (18)	178 (3)
1104	O3 <i>W</i> —H6 <i>W</i> ···O5 <i>W</i>	0.83 (4)	2.18 (3)	2.736 (3)	124 (3)

1105	O3W—H6 W ···O6 W ^{iv}	0.83 (4)	2.09 (4)	2.853 (3)	153 (3)
1106	O3W—H6 W ···O7 W ^{iv}	0.83 (4)	2.06 (4)	2.799 (3)	148 (3)
1107	O4 <i>W</i> —H7 <i>W</i> ···O5 ⁱ	0.88 (1)	2.24 (1)	3.1093 (19)	169 (2)
1108	O4W— $H8W$ ··· $O4W$ ^{iv}	0.88 (1)	2.00 (2)	2.825 (3)	154 (4)
1109	O4 <i>W</i> —H8 <i>W</i> ···O6 <i>W</i>	0.88 (1)	2.41 (5)	2.871 (3)	113 (4)
1110	$O4W$ —H14 W ···O7 W^{iv}	0.89(1)	2.16 (3)	2.902 (3)	140 (4)
1111	O5 <i>W</i> —H9 <i>W</i> ···O4 ^v	0.88 (1)	1.85(1)	2.710 (3)	166 (4)
1112	O5 <i>W</i> —H10 <i>W</i> ···O8 ⁱ	0.89(1)	1.99 (1)	2.843 (3)	163 (3)
1113	O6 <i>W</i> —H11 <i>W</i> ···O2 ^{vi}	0.89(1)	2.22 (2)	2.893 (3)	132 (2)
1114	O6 <i>W</i> —H12 <i>W</i> ···O2 <i>W</i>	0.88 (1)	1.85(1)	2.731 (3)	178 (5)
1115	O7 <i>W</i> —H13 <i>W</i> ···O8 ⁱⁱⁱ	0.88 (1)	1.91 (2)	2.699 (3)	150 (3)
1116	N6—H1 <i>N</i> ···O3	0.92 (2)	1.75 (2)	2.5342 (16)	142 (2)
1117	N4—H2 <i>N</i> ···O3 <i>W</i> ^{vii}	0.92 (3)	1.93 (3)	2.839 (2)	171 (2)
1118	N4—H3 <i>N</i> ···O6	0.91 (2)	1.92 (2)	2.8245 (18)	170 (2)
1119	N4—H4N···O1 ^{viii}	0.91 (2)	2.01 (2)	2.8784 (18)	159.6 (19)
1120	N4—H4N····O1W ^{vii}	0.91 (2)	2.50 (2)	2.9386 (19)	110.5 (16)
1121	N3—H5 <i>N</i> ···O2 ^{vi}	0.84 (2)	2.57 (2)	3.0827 (17)	120.3 (18)
1122	N3—H5 <i>N</i> ····N1 ^{vi}	0.84 (2)	2.02 (2)	2.8655 (19)	177 (2)

 $\begin{array}{l} 1_{123} \\ -y+1/2, z+1/2; (vii) -x, -y+1, -z; (ii) -x, y-1/2, -z+1/2; (iii) x-1, y, z; (iv) -x-1, -y+1, -z; (v) x-1, -y+1/2, z-1/2; (vi) -x, -y+1, -z+1; (vii) x+1, -y+1/2, z+1/2; (vii) -x+1, -y+1, -z+1. \end{array}$

1124 **(V)**

1125 Crystal data

1126 $C_{15}H_{16}N_6O_2S$

1127 $M_r = 344.40$

1128 Monoclinic, $P2_1/c$

1129 a = 8.5796 (2) Å

1130 *b* = 19.0371 (5) Å

1131 c = 11.2512 (4) Å

- 1132 $\beta = 121.116(3)^{\circ}$
- 1133 $V = 1573.27 (9) Å^3$
- 1134 Z = 4

1135 Data collection

- 1136 Oxford Diffraction Xcalibur E diffractometer
- 1137 Radiation source: sealed tube
- 1138 ω scans

F(000) = 720 $D_x = 1.454 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8493 reflections $\theta = 3.0-29.5^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 123 KSheet, colourless $0.4 \times 0.3 \times 0.02 \text{ mm}$

Absorption correction: multi-scan CrvsAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.527, T_{\max} = 1.000$ 22193 measured reflections 4082 independent reflections 3225 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ $\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -25 \rightarrow 25$ $l = -14 \rightarrow 15$

- 1139 Refinement
- Refinement on F^2 Hydrogen site location: mixed 1140 Least-squares matrix: full H atoms treated by a mixture of independent 1141 $R[F^2 > 2\sigma(F^2)] = 0.045$ and constrained refinement 1142 $wR(F^2) = 0.114$ $w = 1/[\sigma^2(F_0^2) + (0.0493P)^2 + 0.8192P]$ 1143 S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 1144 4082 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 1145 $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ 237 parameters 1146 $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$ 0 restraints 1147 Special details 1148
- **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

1150 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X		-	I 7 */ I 7
	<i>x</i>	<i>y</i>	2	
SI	0.87444 (6)	0.84851 (2)	0.27777 (4)	0.02297 (12)
01	0.97267 (17)	0.79251 (7)	0.25677 (14)	0.0309 (3)
02	0.96376 (16)	0.87572 (7)	0.41782 (12)	0.0271 (3)
N1	0.83358 (19)	0.90544 (7)	0.16260 (15)	0.0233 (3)
N2	0.73473 (18)	1.01144 (7)	0.05571 (14)	0.0216 (3)
N3	0.71259 (19)	0.98683 (8)	0.25488 (15)	0.0239 (3)
N4	0.1507 (2)	0.73439 (9)	0.12033 (18)	0.0284 (3)
N5	1.20543 (19)	1.03376 (7)	0.15032 (15)	0.0231 (3)
N6	1.0916 (3)	1.14087 (10)	0.0502 (2)	0.0411 (4)
C1	0.7592 (2)	0.96881 (9)	0.16105 (17)	0.0209 (3)
C2	0.6662 (2)	1.07527 (9)	0.04854 (17)	0.0238 (4)
H2	0.6475	1.1057	-0.0247	0.029*
C3	0.6214 (2)	1.09897 (9)	0.14288 (18)	0.0258 (4)
H3	0.5754	1.1449	0.1382	0.031*
C4	0.6476 (2)	1.05165 (9)	0.24444 (18)	0.0258 (4)
H4	0.6175	1.0661	0.3110	0.031*
C5	0.6654 (2)	0.81161 (8)	0.23937 (17)	0.0215 (3)
C6	0.5823 (2)	0.76230 (9)	0.13303 (18)	0.0266 (4)
H6	0.6422	0.7470	0.0864	0.032*
C7	0.4129 (3)	0.73551 (9)	0.09498 (18)	0.0275 (4)
H7	0.3577	0.7015	0.0230	0.033*
C8	0.3216 (2)	0.75825 (8)	0.16202 (17)	0.0219 (3)
C9	0.4076 (2)	0.80709 (9)	0.26908 (17)	0.0235 (3)
H9	0.3488	0.8224	0.3164	0.028*
C10	0.5776 (2)	0.83359 (9)	0.30745 (17)	0.0235 (3)
H10	0.6342	0.8669	0.3806	0.028*
C11	1.1346 (2)	1.09647 (9)	0.15389 (18)	0.0251 (4)
C12	1.1082 (2)	1.10992 (10)	0.2655 (2)	0.0316 (4)
H12	1.0611	1.1540	0.2721	0.038*
C13	1.1499 (3)	1.06005 (11)	0.3633 (2)	0.0340 (4)
	S1 O1 O2 N1 N2 N3 N4 N5 N6 C1 C2 H2 C3 H3 C4 H4 C5 C6 H6 C7 H7 C8 C9 H9 C10 H10 C11 C12 H12 C13	xS10.87444 (6)O10.97267 (17)O20.96376 (16)N10.83358 (19)N20.73473 (18)N30.71259 (19)N40.1507 (2)N51.20543 (19)N61.0916 (3)C10.7592 (2)C20.6662 (2)H20.6475C30.6214 (2)H30.5754C40.6476 (2)H40.6175C50.6654 (2)C60.5823 (2)H60.6422C70.4129 (3)H70.3577C80.3216 (2)C90.4076 (2)H90.3488C100.5776 (2)H100.6342C111.1346 (2)C121.0611C131.1499 (3)	xyS1 0.87444 (6) 0.84851 (2)O1 0.97267 (17) 0.79251 (7)O2 0.96376 (16) 0.87572 (7)N1 0.83358 (19) 0.90544 (7)N2 0.73473 (18) 1.01144 (7)N3 0.71259 (19) 0.98683 (8)N4 0.1507 (2) 0.73439 (9)N5 1.20543 (19) 1.03376 (7)N6 1.0916 (3) 1.14087 (10)C1 0.7592 (2) 0.96881 (9)C2 0.6662 (2) 1.07527 (9)H2 0.6475 1.1057 C3 0.6214 (2) 1.09897 (9)H3 0.5754 1.1449 C4 0.6476 (2) 1.05165 (9)H4 0.6175 1.0661 C5 0.6654 (2) 0.7470 C7 0.4129 (3) 0.73551 (9)H7 0.3577 0.7015 C8 0.3216 (2) 0.80709 (9)H9 0.3488 0.8224 C10 0.5776 (2) 0.83359 (9)H10 0.6342 0.8669 C11 1.1346 (2) 1.09947 (9)C12 1.1082 (2) 1.10992 (10)H12 1.0611 1.1540 C13 1.1499 (3) 1.06005 (11)	xyzS10.87444 (6)0.84851 (2)0.27777 (4)O10.97267 (17)0.79251 (7)0.25677 (14)O20.96376 (16)0.87572 (7)0.41782 (12)N10.83358 (19)0.90544 (7)0.16260 (15)N20.73473 (18)1.01144 (7)0.05571 (14)N30.71259 (19)0.98683 (8)0.25488 (15)N40.1507 (2)0.73439 (9)0.12033 (18)N51.20543 (19)1.03376 (7)0.15032 (15)N61.0916 (3)1.14087 (10)0.0502 (2)C10.7592 (2)0.96881 (9)0.16105 (17)C20.6662 (2)1.07527 (9)0.04854 (17)H20.64751.1057 -0.0247 C30.6214 (2)1.09897 (9)0.14288 (18)H30.57541.16610.3110C50.6654 (2)0.81161 (8)0.23937 (17)C60.5823 (2)0.76230 (9)0.13303 (18)H40.61751.06610.3110C50.6654 (2)0.81161 (8)0.23937 (17)C60.5823 (2)0.7525 (8)0.16202 (17)C90.4076 (2)0.80709 (9)0.26908 (17)H90.34880.82240.3164C100.5776 (2)0.83359 (9)0.30745 (17)H100.63420.86690.3806C111.1346 (2)1.09647 (9)0.15389 (18)C121.06111.15400.2721C131.1499 (3)1.06005 (11)0.3633 (2)<

	1110	1 1000	1.0.000	0.42(7	0.041*	
1182	H13	1.1283	1.0688	0.4367	0.041*	
1183	C14	1.2247 (3)	0.99557 (11)	0.3572 (2)	0.0368 (5)	
1184	H14	1.2565	0.9607	0.4264	0.044*	
1185	C15	1.2502 (3)	0.98455 (10)	0.2496 (2)	0.0313 (4)	
1186	H15	1.3008	0.9412	0.2437	0.038*	
1187	H1N	0.109 (3)	0.6980 (12)	0.067 (2)	0.036 (6)*	
1188	H2N	0.100 (3)	0.7493 (12)	0.165 (2)	0.038 (6)*	
1189	H3N	1.220 (3)	1.0215 (12)	0.078 (2)	0.044 (6)*	
1190	H4N	1.045 (3)	1.1818 (14)	0.050 (3)	0.051 (7)*	
1191	H5N	1.105 (4)	1.1256 (13)	-0.021 (3)	0.060 (8)*	

1192 Atomic displacement parameters $(Å^2)$

93		U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
94	S 1	0.0214 (2)	0.0248 (2)	0.0239 (2)	0.00462 (16)	0.01254 (17)	0.00161 (16)
95	O1	0.0288 (7)	0.0315 (7)	0.0364 (7)	0.0096 (5)	0.0197 (6)	0.0023 (6)
96	O2	0.0236 (6)	0.0309 (7)	0.0230 (6)	0.0037 (5)	0.0092 (5)	0.0021 (5)
97	N1	0.0221 (7)	0.0251 (7)	0.0242 (7)	0.0019 (6)	0.0130 (6)	0.0013 (6)
8	N2	0.0188 (7)	0.0236 (7)	0.0215 (7)	-0.0033 (5)	0.0097 (6)	-0.0017 (5)
99	N3	0.0220 (7)	0.0278 (7)	0.0224 (7)	0.0011 (6)	0.0119 (6)	0.0000 (6)
0	N4	0.0302 (8)	0.0267 (8)	0.0333 (9)	-0.0041 (7)	0.0201 (7)	-0.0066 (7)
)1	N5	0.0230 (7)	0.0257 (7)	0.0230 (7)	0.0009 (6)	0.0135 (6)	-0.0012 (6)
)2	N6	0.0551 (12)	0.0302 (9)	0.0434 (11)	0.0162 (8)	0.0292 (10)	0.0084 (8)
)3	C1	0.0161 (7)	0.0247 (8)	0.0203 (8)	-0.0027 (6)	0.0082 (6)	-0.0017 (6)
)4	C2	0.0219 (8)	0.0241 (8)	0.0222 (8)	-0.0031 (7)	0.0092 (7)	0.0001 (7)
)5	C3	0.0235 (8)	0.0219 (8)	0.0267 (9)	-0.0007 (7)	0.0092 (7)	-0.0045 (7)
)6	C4	0.0215 (8)	0.0300 (9)	0.0247 (8)	-0.0001 (7)	0.0111 (7)	-0.0047 (7)
)7	C5	0.0238 (8)	0.0199 (8)	0.0227 (8)	0.0031 (6)	0.0135 (7)	0.0024 (6)
8	C6	0.0310 (9)	0.0265 (8)	0.0288 (9)	0.0033 (7)	0.0201 (8)	-0.0030(7)
)9	C7	0.0322 (9)	0.0250 (8)	0.0270 (9)	-0.0013 (7)	0.0166 (8)	-0.0071 (7)
10	C8	0.0261 (8)	0.0183 (7)	0.0232 (8)	0.0027 (6)	0.0141 (7)	0.0044 (6)
11	C9	0.0304 (9)	0.0229 (8)	0.0234 (8)	0.0022 (7)	0.0183 (7)	0.0015 (7)
12	C10	0.0293 (9)	0.0228 (8)	0.0203 (8)	0.0014 (7)	0.0142 (7)	-0.0009 (6)
13	C11	0.0195 (8)	0.0253 (8)	0.0286 (9)	0.0006 (7)	0.0111 (7)	-0.0029 (7)
4	C12	0.0248 (9)	0.0353 (10)	0.0367 (10)	-0.0030 (8)	0.0173 (8)	-0.0133 (8)
15	C13	0.0268 (9)	0.0514 (12)	0.0281 (9)	-0.0147 (9)	0.0173 (8)	-0.0168 (9)
16	C14	0.0405 (11)	0.0416 (11)	0.0289 (10)	-0.0055 (9)	0.0185 (9)	0.0039 (8)
7	C15	0.0368 (10)	0.0270 (9)	0.0331 (10)	0.0041 (8)	0.0202 (9)	0.0033 (8)
-		()			(-)		

1218 Geometric parameters (Å, °)

1219	S1—O2	1.4458 (13)	С3—Н3	0.9500
1220	S1—O1	1.4520 (12)	C4—H4	0.9500
1221	S1—N1	1.5834 (15)	C5—C10	1.388 (2)
1222	S1—C5	1.7592 (17)	C5—C6	1.393 (2)
1223	N1—C1	1.361 (2)	C6—C7	1.383 (3)
1224	N2—C2	1.334 (2)	С6—Н6	0.9500
1225	N2—C1	1.360 (2)	C7—C8	1.407 (2)

1226	N3—C4	1.334 (2)	С7—Н7	0.9500
1227	N3—C1	1.352 (2)	C8—C9	1.393 (2)
1228	N4—C8	1.366 (2)	C9—C10	1.384 (2)
1229	N4—H1N	0.86 (2)	С9—Н9	0.9500
1230	N4—H2N	0.87 (2)	C10—H10	0.9500
1231	N5—C11	1.349 (2)	C11—C12	1.410 (3)
1232	N5—C15	1.353 (2)	C12—C13	1.354 (3)
1233	N5—H3N	0.92 (2)	C12—H12	0.9500
1234	N6—C11	1.329 (3)	C13—C14	1.403 (3)
1235	N6—H4N	0.87 (3)	C13—H13	0.9500
1236	N6—H5N	0.92 (3)	C14—C15	1.352 (3)
1237	C2—C3	1.379 (2)	C14—H14	0.9500
1238	C2—H2	0.9500	C15—H15	0.9500
1239	C3—C4	1.379 (3)		
1240				
1241	O2—S1—O1	114.52 (8)	C6—C5—S1	118.99 (13)
1242	O2—S1—N1	114.53 (8)	C7—C6—C5	120.28 (16)
1243	O1—S1—N1	105.72 (8)	С7—С6—Н6	119.9
1244	O2—S1—C5	108.04 (8)	С5—С6—Н6	119.9
1245	O1—S1—C5	105.70 (8)	C6—C7—C8	120.50 (16)
1246	N1—S1—C5	107.81 (8)	С6—С7—Н7	119.7
1247	C1—N1—S1	121.43 (12)	С8—С7—Н7	119.7
1248	C2—N2—C1	117.44 (14)	N4—C8—C9	120.93 (16)
1249	C4—N3—C1	116.41 (15)	N4—C8—C7	120.64 (16)
1250	C8—N4—H1N	119.2 (15)	C9—C8—C7	118.40 (16)
1251	C8—N4—H2N	117.6 (15)	C10—C9—C8	121.00 (16)
1252	H1N—N4—H2N	121 (2)	С10—С9—Н9	119.5
1253	C11—N5—C15	121.88 (16)	С8—С9—Н9	119.5
1254	C11—N5—H3N	121.5 (14)	C9—C10—C5	120.19 (16)
1255	C15—N5—H3N	116.5 (14)	С9—С10—Н10	119.9
1256	C11—N6—H4N	119.3 (16)	C5—C10—H10	119.9
1257	C11—N6—H5N	117.6 (16)	N6—C11—N5	117.51 (17)
1258	H4N—N6—H5N	123 (2)	N6—C11—C12	124.49 (18)
1259	N3—C1—N2	123.66 (15)	N5—C11—C12	117.99 (17)
1260	N3—C1—N1	122.74 (15)	C13—C12—C11	119.97 (17)
1261	N2—C1—N1	113.60 (14)	C13—C12—H12	120.0
1262	N2—C2—C3	122.76 (16)	C11—C12—H12	120.0
1263	N2—C2—H2	118.6	C12—C13—C14	120.61 (17)
1264	C3—C2—H2	118.6	C12—C13—H13	119.7
1265	C2—C3—C4	115.67 (16)	C14—C13—H13	119.7
1266	С2—С3—Н3	122.2	C15—C14—C13	117.98 (18)
1267	С4—С3—Н3	122.2	C15—C14—H14	121.0
1268	N3—C4—C3	123.98 (16)	C13—C14—H14	121.0
1269	N3—C4—H4	118.0	C14—C15—N5	121.55 (18)
1270	C3—C4—H4	118.0	C14—C15—H15	119.2
1271	C10—C5—C6	119.61 (16)	N5—C15—H15	119.2
1272	C10—C5—S1	121.30 (13)		

1274	O2—S1—N1—C1	-46.01 (15)	C10—C5—C6—C7	0.2 (3)
1275	O1-S1-N1-C1	-173.05 (13)	S1—C5—C6—C7	-176.15 (14)
1276	C5—S1—N1—C1	74.26 (14)	C5—C6—C7—C8	0.7 (3)
1277	C4—N3—C1—N2	-3.3 (2)	C6—C7—C8—N4	176.89 (16)
1278	C4—N3—C1—N1	177.47 (15)	C6—C7—C8—C9	-1.3 (3)
1279	C2—N2—C1—N3	2.2 (2)	N4-C8-C9-C10	-177.19 (16)
1280	C2—N2—C1—N1	-178.51 (14)	C7—C8—C9—C10	1.0 (2)
1281	S1—N1—C1—N3	-1.2 (2)	C8—C9—C10—C5	-0.1 (3)
1282	S1—N1—C1—N2	179.50 (11)	C6—C5—C10—C9	-0.5 (3)
1283	C1—N2—C2—C3	0.4 (2)	S1—C5—C10—C9	175.75 (13)
1284	N2-C2-C3-C4	-1.6 (2)	C15—N5—C11—N6	-178.70 (18)
1285	C1—N3—C4—C3	2.0 (2)	C15—N5—C11—C12	0.1 (3)
1286	C2—C3—C4—N3	0.3 (3)	N6-C11-C12-C13	177.36 (19)
1287	O2—S1—C5—C10	24.88 (16)	N5-C11-C12-C13	-1.4 (3)
1288	O1—S1—C5—C10	147.91 (14)	C11—C12—C13—C14	1.9 (3)
1289	N1—S1—C5—C10	-99.39 (15)	C12—C13—C14—C15	-1.2 (3)
1290	O2—S1—C5—C6	-158.80 (13)	C13—C14—C15—N5	0.0 (3)
1291	O1—S1—C5—C6	-35.78 (16)	C11—N5—C15—C14	0.6 (3)
1292	N1—S1—C5—C6	76.93 (15)		

1293 Hydrogen-bond geometry (Å, °)

1294	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
1295	N4—H1 <i>N</i> ···O2 ⁱ	0.86 (2)	2.04 (2)	2.895 (2)	168 (2)
1296	N4—H2N···O1 ⁱⁱ	0.87 (2)	2.03 (2)	2.887 (2)	174 (2)
1297	N5—H3 <i>N</i> ···N2 ⁱⁱⁱ	0.92 (2)	1.85 (2)	2.758 (2)	174 (2)
1298	N6—H4 <i>N</i> ···N4 ^{iv}	0.87 (3)	2.39 (3)	3.085 (2)	137 (2)
1299	N6—H5 <i>N</i> ···N1 ⁱⁱⁱ	0.92 (3)	2.00 (3)	2.918 (2)	173 (3)

Symmetry codes: (i) *x*-1, -*y*+3/2, *z*-1/2; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*+2, -*z*; (iv) -*x*+1, -*y*+2, -*z*. 1300

(VI) 1301

Crystal data 1302

1303	$C_{12}H_{19}N_5O_4S$	F(000) = 696
1304	$M_r = 329.38$	$D_{\rm x} = 1.503 {\rm ~Mg} {\rm ~m}^{-3}$
1305	Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
1306	a = 12.7755 (4) Å	Cell parameters from 3829 reflections
1307	b = 9.8979 (4) Å	$\theta = 3.2 - 29.5^{\circ}$
1308	c = 11.5366 (4) Å	$\mu = 0.25 \text{ mm}^{-1}$
1309	$\beta = 93.508 \ (3)^{\circ}$	T = 123 K
1310	V = 1456.08 (9) Å ³	Fragment, colourless
1311	Z = 4	$0.25 \times 0.24 \times 0.12 \text{ mm}$
1312	Data collection	

Oxford Diffraction Xcalibur E 1313 diffractometer

Radiation source: sealed tube 1314

 ω scans 1315

1316	Absorption correction: multi-scan	7213 measured reflections
	CrysAlis PRO, Oxford Diffraction Ltd., Version	3571 independent reflections
	1.171.34.40 (release 27-08-2010 CrysAlis171	2942 reflections with $I > 2\sigma(I)$
	.NET) (compiled Aug 27 2010,11:50:40)	$R_{\rm int} = 0.023$
	Empirical absorption correction using spherical	$\theta_{\rm max} = 29.5^\circ, \ \theta_{\rm min} = 3.2^\circ$
	harmonics, implemented in SCALE3	$h = -16 \rightarrow 17$
	ABSPACK scaling algorithm.	$k = -12 \rightarrow 12$
1317	$T_{\min} = 0.904, \ T_{\max} = 1.000$	$l = -15 \rightarrow 15$
1318	Refinement	
1319	Refinement on F^2	Hydrogen site location: mixed
1320	Least-squares matrix: full	H atoms treated by a mixture of independent
1321	$R[F^2 > 2\sigma(F^2)] = 0.037$	and constrained refinement
1322	$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0415P)^2 + 0.609P]$
1323	S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
1324	3571 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
1325	231 parameters	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
1326	0 restraints	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
1327	Special details	

1328 **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

1329 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

1330		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
1331	S1	0.22358 (3)	0.19320 (4)	0.61905 (3)	0.01162 (11)
1332	01	0.17136 (8)	0.31689 (11)	0.58001 (10)	0.0164 (2)
1333	O2	0.20716 (8)	0.15689 (11)	0.73914 (9)	0.0150 (2)
1334	O3	0.45324 (9)	-0.36122 (12)	0.56317 (11)	0.0195 (3)
1335	O1W	0.04450 (10)	0.06888 (14)	0.88727 (13)	0.0264 (3)
1336	N1	0.34262 (10)	0.21715 (13)	0.59377 (11)	0.0131 (3)
1337	N2	0.51428 (10)	0.15350 (13)	0.58746 (11)	0.0146 (3)
1338	N3	0.39549 (10)	0.00832 (13)	0.68028 (11)	0.0150 (3)
1339	N4	0.06716 (12)	-0.25029 (16)	0.31048 (14)	0.0204 (3)
1340	N5	0.33848 (11)	-0.55735 (15)	0.42864 (13)	0.0153 (3)
1341	C1	0.41755 (11)	0.12192 (16)	0.62242 (13)	0.0125 (3)
1342	C2	0.59122 (12)	0.06494 (17)	0.61312 (14)	0.0167 (3)
1343	H2	0.6595	0.0845	0.5894	0.020*
1344	C3	0.57580 (13)	-0.05364 (17)	0.67255 (14)	0.0178 (3)
1345	H3	0.6312	-0.1156	0.6906	0.021*
1346	C4	0.47525 (12)	-0.07671 (17)	0.70408 (14)	0.0169 (3)
1347	H4	0.4617	-0.1575	0.7450	0.020*
1348	C5	0.17356 (11)	0.06143 (15)	0.53090 (13)	0.0119 (3)
1349	C6	0.14954 (12)	-0.06369 (16)	0.57665 (14)	0.0149 (3)
1350	H6	0.1589	-0.0789	0.6579	0.018*
1351	C7	0.11201 (12)	-0.16636 (17)	0.50398 (14)	0.0163 (3)
1352	H7	0.0946	-0.2513	0.5359	0.020*
1353	C8	0.09943 (11)	-0.14617 (16)	0.38370 (14)	0.0150 (3)

1354	C9	0.12428 (12)	-0.01923 (16)	0.33835 (13)	0.0150 (3)
1355	H9	0.1163	-0.0040	0.2570	0.018*
1356	C10	0.16023 (11)	0.08336 (16)	0.41125 (13)	0.0141 (3)
1357	H10	0.1760	0.1693	0.3800	0.017*
1358	C11	0.34327 (12)	-0.37296 (17)	0.57033 (15)	0.0184 (3)
1359	H11A	0.3136	-0.2833	0.5878	0.022*
1360	H11B	0.3284	-0.4349	0.6347	0.022*
1361	C12	0.29135 (12)	-0.42582 (16)	0.45860 (15)	0.0173 (3)
1362	H12A	0.2153	-0.4374	0.4673	0.021*
1363	H12B	0.3005	-0.3601	0.3953	0.021*
1364	H1N	0.0376 (17)	-0.223 (2)	0.243 (2)	0.033 (6)*
1365	H2N	0.0370 (17)	-0.313 (2)	0.3425 (19)	0.029 (6)*
1366	H3N	0.4051 (17)	-0.550 (2)	0.4209 (17)	0.023 (5)*
1367	H4N	0.3120 (17)	-0.587 (2)	0.360 (2)	0.031 (6)*
1368	H5N	0.3293 (17)	-0.625 (2)	0.483 (2)	0.032 (6)*
1369	H1H	0.4656 (19)	-0.297 (3)	0.518 (2)	0.043 (7)*
1370	H1W	0.095 (2)	0.097 (3)	0.833 (3)	0.065 (9)*
1371	H2W	0.070 (2)	0.106 (3)	0.950 (2)	0.046 (7)*

1372 Atomic displacement parameters $(Å^2)$

3		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
4	S1	0.01262 (17)	0.01188 (19)	0.01020 (19)	0.00106 (13)	-0.00062 (13)	-0.00008 (14)
5	01	0.0180 (5)	0.0138 (6)	0.0170 (6)	0.0038 (4)	-0.0017 (4)	0.0010 (5)
6	O2	0.0167 (5)	0.0185 (6)	0.0099 (5)	0.0023 (4)	0.0007 (4)	0.0001 (4)
7	O3	0.0162 (5)	0.0161 (6)	0.0254 (7)	-0.0015 (5)	-0.0037 (5)	0.0028 (5)
8	O1W	0.0229 (6)	0.0330 (8)	0.0227 (7)	-0.0010 (5)	-0.0029 (5)	-0.0036 (6)
9	N1	0.0127 (6)	0.0129 (6)	0.0135 (6)	0.0000 (5)	-0.0011 (5)	0.0009 (5)
0	N2	0.0147 (6)	0.0149 (7)	0.0139 (6)	-0.0009 (5)	-0.0006 (5)	-0.0016 (5)
1	N3	0.0179 (6)	0.0144 (7)	0.0126 (6)	0.0016 (5)	0.0012 (5)	0.0008 (5)
2	N4	0.0253 (7)	0.0185 (8)	0.0171 (8)	-0.0046 (6)	-0.0014 (6)	-0.0029 (6)
3	N5	0.0164 (7)	0.0161 (7)	0.0131 (7)	-0.0015 (5)	-0.0010 (5)	0.0014 (6)
4	C1	0.0149 (7)	0.0137 (7)	0.0085 (7)	-0.0005 (6)	-0.0017 (5)	-0.0032 (6)
5	C2	0.0135 (7)	0.0206 (8)	0.0158 (8)	0.0009 (6)	0.0002 (6)	-0.0049 (7)
6	C3	0.0199 (8)	0.0184 (8)	0.0148 (8)	0.0061 (6)	-0.0016 (6)	-0.0017 (6)
7	C4	0.0222 (8)	0.0147 (8)	0.0136 (8)	0.0026 (6)	-0.0004 (6)	-0.0002 (6)
8	C5	0.0096 (6)	0.0138 (7)	0.0122 (7)	0.0000 (5)	0.0000 (5)	-0.0008 (6)
9	C6	0.0149 (7)	0.0188 (8)	0.0109 (7)	0.0001 (6)	0.0013 (5)	0.0010 (6)
0	C7	0.0172 (7)	0.0155 (8)	0.0161 (8)	-0.0031 (6)	0.0017 (6)	0.0012 (6)
1	C8	0.0111 (7)	0.0170 (8)	0.0169 (8)	0.0007 (6)	0.0007 (6)	-0.0036 (6)
2	C9	0.0152 (7)	0.0194 (8)	0.0104 (7)	0.0022 (6)	0.0003 (6)	0.0003 (6)
3	C10	0.0135 (7)	0.0154 (7)	0.0134 (7)	0.0008 (6)	0.0007 (5)	0.0026 (6)
4	C11	0.0171 (7)	0.0202 (8)	0.0178 (8)	-0.0006 (6)	0.0000 (6)	-0.0022 (7)
5	C12	0.0168 (7)	0.0159 (8)	0.0187 (8)	-0.0007 (6)	-0.0021 (6)	-0.0002 (7)

1396 Geometric parameters (Å, °)

1397	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1.4525 (11)	C2—C3	1.379 (2)
1398	S1—O2	1.4588 (11)	C2—H2	0.9500
1399	S1—N1	1.5838 (13)	C3—C4	1.376 (2)
1400	S1—C5	1.7505 (15)	С3—Н3	0.9500
1401	O3—C11	1.4172 (19)	C4—H4	0.9500
1402	O3—H1H	0.84 (3)	C5—C6	1.388 (2)
1403	O1W—H1W	0.97 (3)	C5-C10	1.397 (2)
1404	O1W—H2W	0.86 (3)	C6—C7	1.384 (2)
1405	N1—C1	1.3694 (19)	С6—Н6	0.9500
1406	N2—C2	1.337 (2)	C7—C8	1.401 (2)
1407	N2—C1	1.3596 (19)	С7—Н7	0.9500
1408	N3—C4	1.337 (2)	C8—C9	1.405 (2)
1409	N3—C1	1.346 (2)	C9—C10	1.379 (2)
1410	N4—C8	1.379 (2)	С9—Н9	0.9500
1411	N4—H1N	0.89 (2)	C10—H10	0.9500
1412	N4—H2N	0.83 (2)	C11—C12	1.507 (2)
1413	N5—C12	1.484 (2)	C11—H11A	0.9900
1414	N5—H3N	0.86 (2)	C11—H11B	0.9900
1415	N5—H4N	0.90 (2)	C12—H12A	0.9900
1416	N5—H5N	0.93 (2)	C12—H12B	0.9900
1417				
1418	O1—S1—O2	114.34 (7)	C3—C4—H4	118.2
1419	O1—S1—N1	104.16 (7)	C6—C5—C10	119.86 (14)
1420	O2—S1—N1	114.03 (7)	C6—C5—S1	121.69 (12)
1421	O1—S1—C5	107.67 (7)	C10—C5—S1	118.44 (12)
1422	O2—S1—C5	107.43 (7)	C7—C6—C5	120.08 (14)
1423	N1—S1—C5	108.97 (7)	С7—С6—Н6	120.0
1424	С11—О3—Н1Н	108.9 (16)	С5—С6—Н6	120.0
1425	H1W—O1W—H2W	101 (2)	C6—C7—C8	120.63 (15)
1426	C1—N1—S1	121.16 (11)	С6—С7—Н7	119.7
1427	C2—N2—C1	116.93 (14)	С8—С7—Н7	119.7
1428	C4—N3—C1	116.59 (13)	N4—C8—C7	120.77 (15)
1429	C8—N4—H1N	113.6 (15)	N4—C8—C9	120.40 (15)
1430	C8—N4—H2N	114.6 (15)	C7—C8—C9	118.78 (14)
1431	H1N—N4—H2N	116 (2)	C10—C9—C8	120.39 (14)
1432	C12—N5—H3N	111.5 (13)	С10—С9—Н9	119.8
1433	C12—N5—H4N	111.2 (14)	С8—С9—Н9	119.8
1434	H3N—N5—H4N	104.9 (19)	C9—C10—C5	120.26 (14)
1435	C12—N5—H5N	114.0 (13)	C9—C10—H10	119.9
1436	H3N—N5—H5N	107.1 (18)	C5—C10—H10	119.9
1437	H4N—N5—H5N	107.5 (19)	O3—C11—C12	111.39 (13)
1438	N3—C1—N2	124.11 (14)	O3—C11—H11A	109.4
1439	N3—C1—N1	122.02 (13)	C12—C11—H11A	109.4
1440	N2—C1—N1	113.87 (14)	O3—C11—H11B	109.4
1441	N2—C2—C3	122.86 (15)	C12—C11—H11B	109.3
1442	N2—C2—H2	118.6	H11A—C11—H11B	108.0

1443	C3—C2—H2	118.6	N5-C12-C11	109.89 (13)
1444	C4—C3—C2	115.90 (15)	N5-C12-H12A	109.7
1445	С4—С3—Н3	122.1	C11—C12—H12A	109.7
1446	С2—С3—Н3	122.1	N5-C12-H12B	109.7
1447	N3—C4—C3	123.61 (15)	C11—C12—H12B	109.7
1448	N3—C4—H4	118.2	H12A—C12—H12B	108.2
1449				
1450	O1—S1—N1—C1	178.29 (12)	N1—S1—C5—C6	109.60 (13)
1451	O2—S1—N1—C1	52.98 (14)	O1—S1—C5—C10	43.52 (13)
1452	C5—S1—N1—C1	-67.02 (14)	O2—S1—C5—C10	167.11 (11)
1453	C4—N3—C1—N2	0.3 (2)	N1—S1—C5—C10	-68.88 (13)
1454	C4—N3—C1—N1	-179.55 (14)	C10—C5—C6—C7	-0.3 (2)
1455	C2—N2—C1—N3	-0.1 (2)	S1—C5—C6—C7	-178.76 (12)
1456	C2—N2—C1—N1	179.74 (13)	C5—C6—C7—C8	1.0 (2)
1457	S1—N1—C1—N3	-4.7 (2)	C6—C7—C8—N4	176.66 (15)
1458	S1—N1—C1—N2	175.48 (10)	C6—C7—C8—C9	-0.8 (2)
1459	C1—N2—C2—C3	-0.2 (2)	N4—C8—C9—C10	-177.60 (14)
1460	N2-C2-C3-C4	0.3 (2)	C7—C8—C9—C10	-0.1 (2)
1461	C1—N3—C4—C3	-0.1 (2)	C8—C9—C10—C5	0.8 (2)
1462	C2—C3—C4—N3	-0.1 (2)	C6—C5—C10—C9	-0.6 (2)
1463	O1—S1—C5—C6	-138.00 (12)	S1—C5—C10—C9	177.88 (11)
1464	O2—S1—C5—C6	-14.40 (14)	O3—C11—C12—N5	56.48 (18)

1465 Hydrogen-bond geometry (Å, °)

6 <i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H…A
7 $\overline{\mathbf{N4}-\mathbf{H1}N\cdots\mathbf{O1}W^{i}}$	0.89 (2)	2.34 (2)	3.173 (2)	156 (2)
8 N4—H2 N ···O1 W ⁱⁱ	0.83 (2)	2.58 (2)	3.293 (2)	144.1 (19)
9 N5—H3 <i>N</i> ···O3 ⁱⁱⁱ	0.86 (2)	2.01 (2)	2.7762 (18)	147.2 (18)
0 N5—H4 N ···O2 ⁱⁱ	0.90 (2)	1.99 (2)	2.8488 (18)	159 (2)
1 N5—H4 N ····N3 ⁱⁱ	0.90 (2)	2.51 (2)	3.038 (2)	118.1 (17)
2 N5—H5 N ···O1 ^{iv}	0.93 (2)	2.44 (2)	3.1006 (18)	128.4 (17)
3 N5—H5 <i>N</i> ⋯N1 ^{iv}	0.93 (2)	2.02 (2)	2.933 (2)	167.3 (19)
4 O3—H1 H ···N2 ^v	0.84 (3)	1.90 (3)	2.7399 (19)	177 (2)
5 O1 <i>W</i> —H1 <i>W</i> …O2	0.97 (3)	1.94 (3)	2.9039 (17)	174 (3)
6 $O1W$ —H2 W ···O1 ^{vi}	0.86 (3)	2.07 (3)	2.8997 (18)	163 (2)

1477 Symmetry codes: (i) -x, -y, -z+1; (ii) x, -y-1/2, z-1/2; (iii) -x+1, -y-1, -z+1; (iv) x, y-1, z; (v) -x+1, -y, -z+1; (vi) x, -y+1/2, z+1/2.

¹⁴⁷⁸ other supporting information

- 1479 Crystallographic Information File. uk3153.cif
- 1480 Structure factors. uk3153Isup2.hkl
- 1481 Structure factors. uk3153IIsup3.hkl
- 1482 Structure factors. uk3153IIIsup4.hkl
- 1483 Structure factors. uk3153IVsup5.hkl
- 1484 Structure factors. uk3153Vsup6.hkl
- 1485 Structure factors. uk3153VIsup7.hkl