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Abstract

In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from,
or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles
of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of
accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with
single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of
individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype
and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-
specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in
viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia
and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common
to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies
and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This
enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in
disease that could be targeted therapeutically.

Keywords Microglia - Monocyte-derived cells - Immune-mediated pathology - Neuroinflammation - Neurodegeneration -
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Introduction

Inflammation of the central nervous system (CNS) is a fea-

ture of many neurological disorders including infectious,
autoimmune, sterile inflammatory, demyelinating and

Alanna G. Spiteri and Claire L. Wishart contributed equally to the

publication.
< Nicholas J. C. King 5 Brain and Mind Centre, School of Medical Sciences,
nicholas.king@sydney.edu.au Faculty of Medicine and Health, The University of Sydney,
Camperdown, NSW 2050, Australia
' Viral Immunopathology Laboratory, Infection, Immunity 6

Department of Neuropathology, Royal Prince Alfred

and Inflammation Research Theme, School of Medical Hospital, Camperdown, NSW 2050, Australia

Sciences, Faculty of Medicine and Health, The University

of Sydney, Sydney, NSW 2006, Australia 7 Theodor Kocher Institute, University of Bern, Bern 3012,
2 Sydney Cytometry Facility, The University of Sydney Switzerland
and Centenary Institute, Sydney, NSW 2006, Australia 8 The University of Sydney Institute for Infectious Diseases,

Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW 2006, Australia

The University of Sydney and Centenary Institute, The University of Sydney Nano Institute, The University
Sydney, NSW 2006, Australia of Sydney, Sydney, NSW 2006, Australia

Charles Perkins Centre, The University of Sydney,
Camperdown, NSW 2050, Australia

Published online: 01 December 2021 @ Springer


http://orcid.org/0000-0002-3877-9772
http://crossmark.crossref.org/dialog/?doi=10.1007/s00401-021-02384-2&domain=pdf

Acta Neuropathologica

neurodegenerative diseases [35, 58, 140, 194, 288]. Tissue-
resident and infiltrating myeloid cells, such as microglia
and monocytes, are recruited to foci of infection, injury or
inflammation in many of these CNS pathologies (Fig. 1),
suggesting a role for these cells in the pathophysiology of
disease [29]. Microglia and monocytes are both members
of the mononuclear phagocyte system that carry out essen-
tial tissue-specific functions, critical for homeostasis and
the response against pathogen evasion [139, 159, 261, 299].
Although the precise contributions of microglia and mono-
cytes to tissue damage and repair in CNS disease remain
poorly resolved, they nevertheless represent potential can-
didates for targeted therapeutics.

Microglia are tissue-resident macrophages of the CNS
parenchyma. These cells arise from uncommitted KIT*
erythromyeloid precursors [181, 316], which seed the
brain from the yolk sac at embryonic day 9.5 in the mouse
[126], well before other glial cells and the formation of
the blood—brain barrier (BBB) [130, 181]. They are sub-
sequently renewed in situ independently of bone marrow
(BM) hematopoietic stem cells (HSC) [3]. However, more
recently, other views challenging the sole yolk sac origin of
microglia have emerged [55].

In the healthy homeostatic CNS, microglia comprise
the predominant myeloid population, followed by non-
parenchymal CNS macrophages [182], collectively called
CNS- or border-associated macrophages (CAMs or BAMs)
[20, 235, 259]. Relative to BAM/CAMs, microglia uniquely
express transmembrane protein 119 (TMEM119) [26], hex-
osaminidase subunit beta (Hexb) [174, 214, 215], P2Y
G-protein-coupled 12 (P2RY12) [41], sialic acid-binding
immunoglobulin-type lectin H (Siglec-H) and Spalt-like
transcription factor 1 (Salll) [45], express low levels of
CD45 compared to leukocytes outside the CNS, and have a
distinct morphology and anatomical location [20, 163, 235,
259, 317]. This makes their identification in the homeostatic
brain fairly straight-forward. However, during inflammation
in response to CNS perturbation, microglia become reactive
or activated, a state in which they upregulate CD45, partially
or totally retract their cytoplasmic extensions and increase
their somatic volume to adopt a more amoeboid morphol-
ogy [266, 303]. Microglia are also joined by a substantial
infiltrate of BM-derived monocytes [298], both of which
similarly express typical myeloid markers [19, 204, 298,
299, 332] (such as CD68, Fig. 1). This hampers the accurate
discrimination of these cell types during neuroinflammation
in the mouse and human CNS.

Monocytes are peripheral myeloid cells derived from
the fetal liver during embryogenesis and are continuously
renewed throughout postnatal life from HSCs in the adult
BM [115]. In the mouse, ‘inflammatory’ monocytes (Ly6CM)
and ‘patrolling’ monocytes (Ly6C!®) have been identi-
fied [114]. In humans, 'classical' monocytes (equivalent to
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Ly6Ch monocytes in mice) make up the majority of the cir-
culating monocyte pool, with the remaining portion made
up by intermediate and ‘non-classical’ monocytes (Ly6C'°
monocytes in mice) [251].

During homeostasis, circulating Ly6C™ monocytes traffic
through semi-permeable CNS regions, such as the choroid
plexus and dura mater, where they increase the local com-
plexity of BAMs [128, 317]. The BBB prevents the infiltra-
tion of monocytes and other peripheral immune cells into
the CNS parenchyma under homeostatic conditions [230].
During inflammation, however, BBB breakdown and leaki-
ness permits the infiltration of monocytes into the paren-
chyma. Such infiltrating monocyte-derived cells (MC), like
monocyte-derived macrophages (MDM) and dendritic cells
(moDC), can adopt a microglia-like phenotype upon entry
into the inflamed brain. While these cells do not necessar-
ily upregulate genes expressed by homeostatic microglia
[25, 66], the phenotypic similarities between populations of
resident and infiltrating myeloid cells may approximate one
another in neuroinflammation, hampering accurate identi-
fication of their respective functions in disease [298, 299].

Animal models employing more recent and precise exper-
imental approaches, such as microglia-depletion drugs, cell
type-specific markers, gene silencing, lineage tracing, and
in vivo imaging techniques, have been used to distinguish
microglia and monocytes in various neuropathologies to
understand their functional roles [26, 88, 91, 214, 220, 299,
343]. While animal models may fail to fully replicate all
aspects of human disease, they have been indispensable
in understanding specific pathogenic mechanisms and the
effect of therapeutics on particular aspects of disease. We
now understand microglia and monocytes to be highly het-
erogeneous in phenotype and function, having both protec-
tive and pathogenic roles that contribute to disease onset,
progression and/or recovery.

Here, we integrate and contrast human and animal find-
ings from studies investigating viral encephalitis, CNS
injury, neurodegenerative disease and autoimmune neuro-
inflammation to elucidate key agonistic and antagonistic
features of microglia and their BM-derived monocyte coun-
terparts across these neuropathologies. We focus on studies
using more selective approaches, including transcriptomic
profiling, high-dimensional cytometry and myeloid cell
depletion to more accurately dissect their functional roles
in neurological disease. In doing so, we identify common
pathogenic or protective cell type-specific functions and
phenotypes that may aid the development of targeted thera-
peutics across CNS diseases.

Viral encephalitis

Neuroinflammation resulting from viral infection of the
CNS parenchyma (i.e., viral encephalitis) carries ~5-30%
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Fig. 1 Macrophage/microglial CD68 tissue staining in human CNS
pathologies. Ameboid (solid arrows, likely macrophages and/or reac-
tive microglia) and ramified (open arrows, likely microglia) CD68*
myeloid cells are shown in various neuropathologies: a West Nile
virus (WNV) [247]. Macrophage/microglia engulfing a degenerat-
ing neuron (arrowheads) in the substantia nigra in a patient with ful-
minant WNYV encephalitis (400X magnification). b Cortical stroke
[94]. Foamy macrophages/microglia are present in a cerebral infarct
(several weeks old) (scale bar represents 50 pm). ¢ Parkinson disease
(PD) [65]. Ramified microglia and macrophages with enlarged cyto-
plasm and short stout processes are present in the substantia nigra
(400X magnification). d—f Amyotrophic lateral sclerosis (ALS) [38].

The three images show the variable extent of microglia activation in
the corticospinal tract in patients with ALS assessed as either mild
(d), moderate (e) or severe (f) (scale bar represents 250 pm). g—i Alz-
heimer disease (AD) [148]. The three images show the rounded ame-
boid microglia (g), ramified microglia (h) or foamy macrophages (i)
that can be seen in AD brains (scale bar represents 10 pm). j—1 Mul-
tiple sclerosis (MS) [193]. Three images show variable inflammatory
activity in MS, with either numerous foamy macrophages within a
demyelinating plaque (j), macrophages at the rim of a plaque (arrow-
heads) (k), and an inactive plaque with only a few ramified microglia
(1. All images reproduced with permission
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fatality rate, with survivors experiencing severe neurologi-
cal sequelae and memory deficits that may worsen over time
[111,209,272,329, 340]. Upon entry into the parenchyma,
viruses infect and replicate in neurons and/or glia, initiating
an inflammatory response. The production of various soluble
factors by resident brain cells recruits a range of leukocytes
from the periphery, including monocytes and lymphocytes,
which carry out effector functions necessary for viral clear-
ance [188]. In severe viral encephalitis, large numbers of
microglia and peripherally-derived MDMs can be seen in
human post-mortem tissue (Fig. 1a). However, this response
is not always beneficial and an overexuberant inflammatory
response may also drive neuropathology [185]. For instance,
in West Nile virus (WNV) encephalitis, the infiltration of
MDMs is particularly associated with injury to brain cells,
tissue swelling and the development of seizures [120-123].
In modelling these responses in the CNS, murine models
inoculated with a relevant neurotropic virus are commonly
used, although this may not necessarily reflect true disease
in the human.

Relevance of murine models to human viral
encephalitis disease

While extensive research has uncovered various processes
involved in the pathogenesis of viral encephalitis, there are
significant differences between mouse models and human
disease. To begin with, researchers use a variety of inocula-
tion routes for the same virus, including intradermal, sub-
cutaneous, intravenous, intramuscular, intracranial or intra-
nasal. These routes of inoculation model different aspects of
pathology, but vary in invasiveness and viral dose, with very
few replicating the usual route of infection by the homolo-
gous virus in humans [39, 72, 80, 184, 337]. This has a
significant impact on (1) local innate and immune defen-
sive responses, (2) spread of virus locally or systemically,
and (3) presentation of viral antigen in local draining lymph
nodes versus wide dissemination throughout the animal, all
of which may substantially alter the outcomes of infection
[39, 337].

The choice of mouse and virus strain may further
influence disease pathogenesis and the outcome of infec-
tion. Investigators use different mouse strains, frequently,
C57BL/6 or BALB/c, for example, which have widely dis-
parate responses to viruses. Genetically modified, usually
transgenic or knockout animals, are also commonly used,
which take little account of the compensatory changes that
may occur in the absence or presence of a particular gene
and which consequently demonstrate very different immune
responses to infection [39, 80], with local availability often
dictating the choice of strain for these studies. It is also com-
mon for different laboratories to use different strains of the
same virus, often a specifically laboratory-adapted strain,
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often dictated by the availability of the appropriate biosafety
facilities (e.g., BSL-2 versus BSL-3), or a virus monoga-
mous to the model host, or one that is seldom encountered
by it [141], potentially compounding this still further. Mice
are almost always used at an age convenient to the model
being studied, with weaning, the formation of the BBB,
puberty and sexual maturity, being common temporal land-
marks for infection [8, 123, 368]. This is often to enable reli-
able infection (e.g., some neurotropic viruses will only infect
mice prior to the formation of the BBB), but differences
in immune system maturity can significantly influence the
immune response to infection. Furthermore, until recently
in immunological work, it has been common to use only
female mice, which ignores the effect of sex differences on
the immune response. Finally, there is increasing awareness
of the effects of the cellular circadian clock and diet on cel-
lular metabolism driving immune responses [195, 307, 308],
with differences in housing conditions and significant vari-
ability in macronutrient composition of ad libitum ‘standard’
chow between institutions.

Variables of this kind make infallible comparison
between experimental models difficult, even before consid-
ering their applicability in humans. However, the stochastic
incidence and clinical presentation of established illness
and its subsequent chronicity in human disease, often after
any antecedent pathogenesis can be recorded, the variable
availability and timing of investigative modalities, access
to samples, usually restricted to body fluids, occasional
biopsies and/or post-mortem tissue, with tissue degradation
due to post-mortem delays often reducing the reliability of
results, also impose significant limitations on its detailed
study, ultimately increasing our reliance on experimental
animal models as an important complementary approach to
investigating human disease. Needless to say, many of these
benefits and drawbacks also apply to the study of other neu-
rological diseases.

Microglia in viral encephalitis

Neuroprotective role of microglia in acute-phase viral
encephalitis

Historically, using non-selective techniques, microglia were
argued to have a neurotoxic role in encephalitis, producing
inflammatory cytokines and orchestrating immune-medi-
ated pathology [53, 263]. With the recent development of
PLX5622, a colony-stimulating factor 1 receptor (CSF1R)
inhibitor that causes rapid microglia depletion [295], the
functions of microglia in viral encephalitis have been
extensively revised. Despite other CSFIR inhibitors (i.e.,
PLX3397 and BLZ945) being available before PLX5622,
few studies investigating viral encephalitis utilised these
earlier compounds. PLX5622 is generally formulated into
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chow or administered via oral gavage. It enables sustained
microglial depletion without breaching the BBB, without
toxicity and without initiating an inflammatory response,
as seen with other microglial depletion methods [295, 299,
331]. However, this reagent is not microglia-specific, as
other cells also express CSFIR [131]. Despite a lack of con-
firmatory evidence [134], it was suggested that PLX5622
also causes functional impairments in peripheral lymphoid
and myeloid compartments [198]. This molecule likely also
affects BAMs, as reported in the case of PLX3397 [317],
placing an important caveat on the interpretation of data
where PLX5622 is assumed to be purely microglia-specific.

Microglia ablation in Mouse Hepatitis Virus (MHV),
Japanese Encephalitis Virus (JEV), Theiler’s Encepha-
lomyelitis Virus (TMEV), Pseudorabies Virus (PRV)
and WNYV encephalitis models has demonstrated a clear
neuroprotective role of these cells in the acute phase of
infection [96, 107, 274, 279, 335, 344], and alternative

microglial depletion methods in Vesicular Stomatitis Virus
(VSV) infection have produced similar findings [59, 234].
In some of these studies, microglial depletion resulted in
increased weight loss, increased viral burden and persis-
tence, as well as increased viral spread in the CNS and into
the periphery [96, 107, 335, 344]. A detailed comparison
of recent work using PLX5622 to deplete microglia in dif-
ferent viral encephalitis models is shown in Tables 1 and
2. Collectively, these findings suggest that microglia are
pivotal in controlling virus spread in the CNS, with this
protective role required especially in the earlier phases of
disease [96, 107, 335, 344]. Nevertheless, there is sub-
stantial disparity between studies in the elucidation of
the precise mechanisms by which microglia control viral
spread, presumably consistent with the divergent evolution
of virus-host survival strategies for different viral patho-
gens. Figure 2 illustrates the putative pathogenic and pro-
tective roles of microglia and MDM in viral encephalitis.

Table 1 Comparison of studies using PLX5622 to deplete microglia in various models of viral encephalitis (part 1)

Study Virus Infection # days mice were Mice Enhanced Enhanced Enhanced Enhanced
fed PLX5622 mortal- morbid- weight viral load?
before infection ity? ity? loss?

Sanchez et al. Daniel's strain of intracranial (i.c) 7 C57BL/6 Yes Yes Not N/R

[274] TMEV Males recorded
4 weeks old (N/R)
Funk WNV-NY, strain footpad (f.p) 14 C57BL/6 Yes Yes Yes Yes
et al. [107] 3000.0259 ic Males No N/R No No
Attenuated 6 weeks old Yes N/R Yes Yes
WNV-NS5-
E218A
‘Wheeler Neuroattenuated i.c 7 C57BL/6 Yes N/R N/R Yes
et al. [344] variant of the Males
JHMYV strain of 5-6 weeks old
MHV
NI1347A, anr1] intranasal (i.n) Yes N/R N/R N/R
macrodomain
point mutant
virus
Recombinant ip Yes N/R N/R N/R
parental JHMV
Waltl et al. Daniel’s strain of i.c 21 JAX® Yes Yes Yes Yes
[334] TMEV C57BL/6 J (B6)
Female
4 weeks old
Seitz et al. [279] WNV-NY99 f.p 14 Swiss-Webster Yes N/R No Yes
p3 strain of JEV Female Yes N/R No Yes
7-10 weeks old
Fekete et al. [96] PRV-Bartha intraperito- 21 C57BL/6 ] N/R Yes N/R Yes
derivative, neal (i.p.) or Gender not
PRV-Bartha- directly into specified
Dup-Green the epididymal 12-18 weeks old
white adipose
tissue
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a Protective

Viral antigen

A Anti-viral immunity
4 Viral clearance

IL-10

Fig.2 Protective and pathogenic roles of monocytes and microglia
in viral encephalitis. a Protective functions. In viral encephalitis,
microglia enhance viral clearance by phagocytosing virus-infected
cells. Both microglia and MDMs stimulate anti-viral T cell responses,
which is optimized by microglia-mediated regulation of Treg infiltra-

Microglial role in effective T cell responses mediating viral
clearance

The importance of an effective T cell response in viral clear-
ance and improved disease outcome has been shown in vari-
ous viral encephalitis models. T cell activation requires anti-
gen presentation and co-stimulation via antigen-presenting
cell (APC)-expressed Major Histocompatibility Complex
antigen (MHC) and CD80 (B7-1)/CD86 (B7-2), respec-
tively. Strikingly, in the absence of microglia, several studies
have shown an ineffective or inadequate CD8*, CD4* T cell
and/or regulatory T cell (Treg) response, suggesting a role
for microglia in T cell infiltration and/or activation. How-
ever, many of these studies lack specific evidence and do not
take into account the indirect effects caused by microglia-
depletion agents.

CD8* T cells A reduction in the number of APCs in the CNS
following PLX5622 treatment was thought to contribute to
a sub-optimal CD8* T cell response during WNYV infection,
resulting in poor virus control [107], implicating microglia
in CD8™ T cell activation (Table 2). However, in this model,
both microglia and MDM numbers were reduced in the
brain, making it difficult to determine whether microglia or
MDMs were responsible for the reduced T cell activation.
Paradoxically, numbers of CD8% T cells were increased
in the CNS in microglia-depleted animals compared to
untreated controls, although these T cells nonetheless dis-
played reduced expression of ‘activation markers’, such as
CD69 and CD160 [107]. The recent finding that CD69 is a
marker of CNS-resident T cells [250] further confounds this
interpretation and more precise analysis will be required to
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tion. b Pathogenic functions. NO- and IL-6-producing MDMs exac-
erbate neuronal damage and contribute to immunopathology. MDM,
monocyte-derived macrophage; MHC, major histocompatibility com-
plex; NO nitric oxide; IL interleukin; Treg regulatory T cell

determine the contribution of microglia and/or MDMs to
effective CD8™ T cell responses in this model.

In addition to decreased APCs in the CNS, the numbers
of circulating APCs in the spleen, blood, and pancreatico-
duodenal lymph node were also reduced in this model of
WNV infection [107]. Thus, reduced peripheral APCs could
also have contributed to a sub-optimal systemic CD8% T
cell response, although other studies using the same dose
and PLX5622 administration route showed no or limited
peripheral changes in PLX5622-treated animals (Table 2).
Differences in the systemic response to PLX5622 may addi-
tionally be due to the age, sex and infection status of mice, or
the duration of PLX5622 treatment. Thus, interpretation of
studies using PLX5622 to determine the specific functions
of microglia must take into account any indirect effects it
may cause.

Using alternative experimental systems, including fate-
mapping and intravital imaging, Moseman et al. [234]
clearly identified a role for microglia in CD8* T cell activa-
tion. Microglia were required for the cross-presentation of
viral antigen from VSV-infected neurons to CD8% T cells
to contain virus and prevent its fatal spread. CD8" T cell
recognition of MHC class I (MHC-I) on microglia was cru-
cial for survival, while conditional deletion experiments in
this model showed that neuronal MHC-I was not required
(Fig. 2) [234].

CD4" T cells Other studies showed a more important role
for microglia in CD4" T cell responses. In TMEYV infection,
PLX5622-driven microglial depletion resulted in reduced
CNS infiltration of CD4" T and CD44% CD4" T cells
[335], whereas in MH V-infected brains, microglia depletion
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reduced CD4* and virus-specific, IFN-y-expressing CD4% T
cells [344] (Table 2). In the latter study, the authors argued
that the ineffective CD4* T cell response was dependent
on reduced microglia/macrophage MHC-II expression and
immaturity of infiltrating APC, collectively preventing re-
stimulation of CD4* T cells in the CNS (Fig. 2).

T regulatory cells Increased Treg numbers in the CNS
resulting from the absence of microglia were also reported in
two independent viral encephalitis models (Table 2). Tregs
possess several anti-inflammatory mechanisms, including
release of interleukin (IL)-10, which dampen the anti-viral
immune response and reduce immune-mediated pathology
[151]. Thus, their increased infiltration can hamper effec-
tive viral clearance. Accordingly, the increased number and
percentage of Tregs in the CNS and increased /170 mRNA
expression in TMEV-infected, PLX5622 microglia-depleted
mice suggest a role for microglia in regulating the infiltra-
tion of Tregs into the brain [335]. In this study, increased
Treg numbers were thought to contribute to an ineffective
cytotoxic CD8* T cell response, resulting in decreased viral
control and reduced survival in the absence of microglia.
Importantly, however, the increase in Treg numbers in this
study was not statistically different from the non-depleted,
infected control mice. Furthermore, while this study con-
cluded that Treg numbers affected the CD8* T cell response,
there was a significant increase in IFN-y in the CNS and
no change in the number of infiltrating CD8* T cells in
PLX5622-treated animals, suggesting changes in Treg num-
bers did not affect a functional T cell response.

Thus, while discrepancies between studies investigating
T cell number and their activation in the CNS may sug-
gest a role for microglia in encephalitis caused by particular
viruses, many of these studies lack specific evidence for the
contribution of microglia to CD4", CD8" or Treg responses.
Moreover, the wider effects of PLX5622 on the myeloid and
lymphoid compartments [198] make it impossible to assess
the specific role of microglia using this molecule alone.

The role of microglia in MDM maturation and CNS
infiltration

The absence of microglia in virus-infected brains also affects
the number of MDM infiltrating into the CNS, suggesting
a role for microglia in the recruitment of monocytes from
the blood. This phenomenon may be virus-specific, as stud-
ies have reported an increase [344], decrease [96, 107] or
no change [335] in the number of immigrating MDMs in
these diseases (Table 2). Two studies reporting a differential
infiltration of MDMs into the virus-infected CNS reported
a reduction in the expression of MHC-II or CD86 on these
cells (Table 2), arguably supporting a role for microglia in
enhancing MDM antigen presentation upon CNS entry.

However, the possibility that reduced MDM infiltration
is a result of PLX5622 targeting CSF1R, which is highly
expressed by these cells, is difficult to exclude.

Despite various groups showing reduced numbers of infil-
trating MDMs and cytokine production in the CNS of micro-
glia-depleted mice during infection, these animals were
still highly susceptible to lethal encephalitis. This appears
inconsistent with the observation that inhibiting monocyte
infiltration into the WNV-infected brain reduces immune-
mediated pathology and enhances survival [120, 122], while
in contrast, reduced MDM infiltration and decreased Nos2,
Ifng and Tnf expression in the brains of microglia-depleted
WNV-infected mice did not improve survival [107]. These
findings suggest that maintaining a microglial network for
early defence is as important as reducing subsequent MDM-
mediated immunopathology in viral encephalitis.

The role of microglial migration and phagocytosis in virus
control

The purinergic receptor, P2ZRY 12, was shown to have a role
in the control of viral spread in encephalitis caused by PRV,
an alphaherpesvirus that infects the brain via retrograde syn-
aptic spread from peripheral neurons [96]. Using advanced
imaging techniques in P2RY 12-deficient (P2RY127/~) mice
treated with PLX5622 and infected with PRV, this study
showed rapid, precise microglial migration to and phago-
cytosis of virus-infected neurons to reduce CNS spread
(Table 2). Microglia/macrophage-mediated engulfment of
virus-infected neurons has also been observed in human
WNV-infected brains [247] (Fig. 1a). In PRV infection, this
process involved microglial migration towards ATP (the
ligand for P2RY12) released by infected neurons prior to
the appearance of mature virions in the neuronal cytoplasm
and before neuronal membranes were compromised. In stark
contrast to the transcriptional changes seen in neurodegen-
erative diseases [174, 179, 191, 214], microglia upregulated
P2RY 12 by two-fold in this model, demonstrating its impor-
tance in CNS infection.

Similarly, during infection with neurotropic VSV, micro-
glia accumulated in the olfactory bulb, forming an ‘innate
barrier’ which impeded viral spread to caudal regions of the
brain [59]. Consequently, microglial depletion with BLZ945,
a different CSF1R inhibitor, resulted in increased VSV load
and spread, transforming a sublethal infection into lethal
encephalitis. Here, microglial ‘activation’ and accumulation
relied on neuron—astrocyte crosstalk. Abrogation of IFN-
o/P receptor in neurons and astrocytes, but not microglia,
resulted in reduced microglial activation, accumulation, pro-
liferation and enhanced viral spread and mortality. This sug-
gests that IFN-P produced in the olfactory bulbs stimulates
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IFN-o/p receptor signaling in neurons and astrocytes, indi-
rectly enhancing the microglial anti-viral response.

Role of aberrant synaptic pruning in post-viral cognitive
dysfunction

Patients recovering from viral encephalitis often show
severe neurological sequelae, including deficits in memory,
visuospatial and verbal learning, and motor and executive
functions [111, 209, 272, 329, 340]. Permanent cognitive
dysfunction after infectious encephalitis can occur without
neuroinvasion, with cognitive deficits worsening over time
[237]. In WNV and Zika virus (ZIKV) encephalitis, micro-
glia have been identified as orchestrators of spatial-learning
impairments seen in the recovery phase after viral neuroin-
vasion [111, 324].

While the phagocytic role of microglia may be protec-
tive in the acute phase of viral infection, the same function
can become detrimental post infection. This is shown by the
inappropriate removal of hippocampal synapses leading to
circuitry dysfunction and spatial-learning deficits in the clin-
ical recovery phase from WNV and ZIKV neuroinvasive dis-
ease [111, 324]. Both studies show the importance of com-
plement protein C3, the hydrolysed fragment of which, C3a,
is recognized by microglial-expressed C3a receptor (C3aR),
in the aberrant engulfment of synapses. Discrete immuno-
pathological effects post infection with different flaviviruses
were demonstrated by Gaber et al. [109], with WNV infec-
tion associated with the enhanced elimination of presynaptic
termini and ZIKV infection resulting in neuronal cell death
and the enhanced elimination of post-synaptic termini. This
study elegantly showed that the persistence of CD8* T cells
expressing IFN-y in the brain parenchyma was required
for both microglial activation and the neuronal loss and/or
synapse elimination resulting in cognitive dysfunction dur-
ing the recovery from WNYV and ZIKYV infection. Accord-
ingly, absence of microglial Ifngr prevented the effects of
flavivirus-induced hippocampal damage and related clinical
deficits [111].

Nonetheless, enhanced microglia-mediated synaptic
engulfment during insult, infection or injury may well be
a protective mechanism, for instance by preventing excito-
toxicity and dampening nonsense signalling activity from
damaged or injured neurons [342] or, in the context of neu-
rotropic infection, by limiting trans-synaptic viral spread or
aberrant calcium signalling by infected neurons [324]. At
the same time, this can also lead to the collateral loss of
bystander synapses, a process also observed in CNS patholo-
gies, such as Alzheimer’s Disease (AD) and related demen-
tias [62, 104], and in animal models of Multiple Sclerosis
(MS) [10, 21]. While this remains a matter of debate, it has
been proposed that C3aR-dependent microglial synaptic
engulfment has a role in the functional decline observed in
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MS [342], AD [152] and aging (Fig. 4). Much like in WNV
infection, synapse elimination occurs predominantly at the
presynaptic termini and is dependent on the alternative com-
plement cascade (i.e., C3 hydrolysis). Similarly, impaired
learning coinciding with synapse and neuronal loss was
abolished in aged mice deficient in C3 [285]. Furthermore,
IFN-y-induced C3 expression in an amyloidogenic mouse
model reduced plaque load but resulted in increased loss
of synapses and cognitive dysfunction [152, 284]. Thus, in
various CNS diseases, microglia show conserved pathologi-
cal mechanisms, which could be targeted for the modulation
of disease processes.

Monocytes in viral encephalitis

The severe neuroinflammatory response associated with
viral encephalitis recruits a substantial monocytic infil-
trate from the periphery, constituting more than 50% of all
recruited cells in some disease models [122, 123]. This sig-
nificant infiltration is also evident in severe viral encephalitis
in humans at postmortem [11, 247, 273] (Fig. 1a). Together
with recruited lymphocytes and resident microglia, mono-
cytes carry out inflammatory and anti-viral effector functions
necessary for viral clearance [188]. However, this response
is not always beneficial and an overexuberant inflammatory
response may contribute to fatal encephalitis. A comparison
of the differential roles and associated phenotypes (RNA and
protein) of microglia compared to MCs in viral encephalitis
can be seen in Table 3.

Monocyte-mediated viral clearance contributes
to secondary tissue damage

Upon entry into the infected brain, MDMs can present viral
antigen and support CD4* T cell-mediated viral clearance
or contribute to the killing of infected cells through release
of inflammatory mediators, such as NO and IL-6 [16, 22, 54,
200] (Fig. 2). While these responses enhance pathogen clear-
ance, they can also contribute to substantial neurodegenera-
tion [70, 120, 122, 123, 155, 334]. During WNYV infection
in the mouse, for instance, the infiltration of Ly6Chi mono-
cytes into the infected brain coincides with the onset of fatal
encephalitis [122, 123]. These inflammatory monocytes are
recruited to the CNS in a C—C Motif Chemokine Ligand 2
(CCL2)- and very late antigen-4 (VLA-4)-dependent man-
ner and exacerbate CNS injury through sustained produc-
tion of NO [122, 123]. Inhibiting monocyte infiltration into
the brain with anti-CCL2 and anti-VLA-4 antibody block-
ade or inhibiting their inflammatory activation by inhibi-
tion of Nos2 with aminoguanidine hemisulphate signifi-
cantly increases survival in infected mice without altering
viral titre [122, 123], strongly supporting the notion that
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Table 3 (continued)

&

Monocyte-derived cells

IFN-y signalling in microglia results in neuronal loss and/or synapse elimination during CNS-infiltrating Ly6C" monocytes and macrophages contribute to seizure incidence,

Microglia

Neuro-
toxic
roles
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seizure severity, memory deficits or hippocampal neuron damage in TMEV-induced

encephalitis [70, 155,_ 334]
IL-6-producing CD45"CD11b* myeloid cells correlate with seizure development in

the recovery of WNV and ZIKV infection causing flavivirus-induced hippocampal

damage and memory and learning deficits [111]

TMEY encephalitis [70, 79]
Ly6C* MDM trafficking into the brain correlates with morality in WNV encephalitis

(Sarafend strain) [122, 123]
Infiltration of NO-producing Ly6C* MDM into the CNS correlates with mortality in

lethal WNV encephalitis (Sarafend strain) [122]

monocytes and MDMs mediate inflammatory damage in
WNV infection.

The detrimental role of monocytes in the context of
viral encephalitis is likely confined to the CNS paren-
chyma [122], as these cells play an essential and benefi-
cial role in controlling WNV infection in the periphery
prior to their infiltration into the CNS [73], although they
also contribute to significant local tissue damage in the
periphery in alphavirus infection [363]. This is consistent
with studies showing that the reduction of monocytes into
the CNS using CCR2-, CCL2-, and CCL7-deficient mice
or in vivo clodronate liposome administration increased
viral burden when virus was peripherally inoculated [16,
22, 200]. Upon entry into the infected brain, monocytes
express MHC-II, CD80 and CD86 and have the capacity
to present antigen and stimulate the proliferation of acti-
vated T cells [122] (Fig. 2), together supporting their role
in inducing anti-viral T cell responses. It is possible that
a detrimental or beneficial response of monocyte-derived
cells in WNV encephalitis depends on the virus strain,
dose, and route of inoculation. However, considering their
relatively late arrival into the CNS parenchyma [122],
whether these cells contribute to WNV clearance in the
brain is still unclear.

Potential role of monocytes in seizure development

The recruitment of monocytes into the CNS following
infection with TMEV is also thought to significantly con-
tribute to hippocampal neurodegeneration [155] and sei-
zure development during viral encephalitis [70, 334]. This
pathological role is emphasized by studies demonstrating
that the in vivo depletion of myeloid cells with anti-Gr-1
antibody or with anti-inflammatory agents, wogonin and
minocycline, preserved cognitive functions and reduced
seizure incidence [70, 155, 334]. Although these studies
attributed ameliorated disease signs to reduced monocyte
trafficking into the brain, the findings are potentially con-
founded by non-specific depletion methods; thus, the par-
ticipation of other cell types cannot be excluded. Using
a different monocyte-depletion method with clodronate
liposomes (which deplete phagocytes in the blood-
stream, spleen, and BM [319-321]), seizure severity was
improved but there was no amelioration in hippocampal
neurodegeneration [334], suggesting the observed con-
tribution of monocytes to pathology is dependent on the
depletion method. Altogether, whether seizures originate
innately in embryologically primed, infected neurons or
exogenously from parenchymal or other infiltrating cell
stimuli remains unclear [70, 120, 122, 123, 155, 334] and
deciphering the functional roles of monocytes in viral
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encephalitis-induced seizures will require more precise
investigation.

Ischemic injury and repair

Stroke, which can be generally divided into haemorrhagic
stroke and ischemic stroke, accounts for approximately
10% of all deaths and 5% of all disability-adjusted life
years worldwide [239]. Ischemic strokes are the most prev-
alent type of stroke [176], and they are caused by arterial
occlusion, which is most commonly caused by large ves-
sel atherosclerosis and plaque rupture, cardioembolism,
and small vessel disease (typically linked to hypertension)
[176, 330]. In general, however, ischemic stroke is a clini-
cally heterogeneous condition determined by the degree,
duration, and location of ischemia, as well as age, sex, and
multi-medication comorbidities [290]. Although rodent
models may reproduce the consequences of an ischemic
insult, they often fail to recreate the complex pathophysi-
ology that leads to an endogenous stroke [208].

Relevance of murine models to human ischemic
stroke

Animal models of ischemic stroke carry significant limita-
tions in replicating the aetiology and time course of human
disease. Many researchers have attempted to model dis-
ease pathogenesis in young, healthy male rodents [51, 83,
208], despite the fact that ischemic stroke is most preva-
lent in older individuals [24, 95] and is strongly linked
to systemic diseases, such as hypertension, hypercholes-
terolemia, obesity, and diabetes mellitus [14]. With the
exception of thromboembolic clot models [290], these
models also fail to replicate the delayed spontaneous
reperfusion reported in 17% of human thromboembolic
strokes [175]. While the sequence of events following
cerebral ischemia is similar in humans and rodents, the
kinetics of this response also vary substantially [154]. This
impacts the therapeutic window for reversible ischemic
damage [154], as well as the functional recovery period,
which can span years in humans [47]. These discrepancies
between stroke animal research and clinical practice have
been identified as a leading cause of translational failures
[28, 158], prompting significant reform in study design
and experimental model selection in the field [33, 100,
157, 207].

These limitations have recently been addressed by
either inducing stroke in aged animals with pre-existing
comorbidities (e.g., diabetes, hyperlipidemia, obesity,
infection), reviewed in [217], or using animal models with
risk factors that eventually result in spontaneous stroke

(e.g., spontaneous hypertensive rat and stroke-prone spon-
taneously hypertensive rat) [92, 245]. Although these
models more accurately mimic human ischemic stroke
[290], they nonetheless recreate only individual aspects
of this clinically heterogeneous disease [208]. Therefore,
investigations attempting to generalize findings from iso-
lated experimental models of ischemic stroke should be
interpreted with extreme caution.

Nonetheless, animal models have been invaluable in
understanding evolving brain injury following an ischemic
insult [84]. Within minutes of blood flow interruption
(15-20% below baseline), irreversible cell death ensues,
resulting in the formation of an infarct core [85]. The
penumbra, or non-functional tissue around the infarct core,
may recover; however, if blood flow is not restored, this "at-
risk" tissue will be incorporated into the infarct core [13,
305]. Infarcts often continue to expand even after blood
flow is restored to the occluded region, in the process of
ischemia—reperfusion injury [244].

The sequence of events following an ischemic injury
and involvement of resident and peripheral immune cells is
remarkably similar between human disease and its experi-
mental models. Examination of post-mortem human stroke
lesions demonstrates that inflammation begins early after
ischemic insult [223] and the surrounding penumbral tis-
sue is rapidly surrounded by ‘activated’ microglia [90]. This
inflammatory response is associated with the release of dam-
age-associated molecular patterns (DAMPs) from injured
neurons, BBB breakdown, and infiltration of peripheral
immune cells, including monocytes and neutrophils, into the
ipsilateral hemisphere [90], with macrophages, mononuclear
cells, and perivascular cuffing present in 75%, 44%, and 42%
of human brains with ischemic infarcts, respectively [223].
Although infiltrating immune cells may act in concert with
resident cells to initiate debris clearance and tissue repair
processes [369], acute inflammation may persist and trans-
form into chronic, non-resolving inflammation. Inflamma-
tory mononuclear cells and macrophages may persist for
up to 53 years following the initial ischemic insult [223]
and are often present in chronic lesions (Fig. 1b). Aber-
rant acute inflammation may also contribute to secondary
injury, aggravating tissue damage and increasing lesion vol-
ume [160]. As a result, the neuroinflammatory response to
ischemic injury is a critical determinant of brain damage and
neurological recovery following a stroke. Despite variations
in the kinetics the inflammatory response underlying this
process [171], animal models show cross-species parallels
in the immune response to ischemic injury.
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Fig.3 Roles of monocytes and
microglia in ischemic stroke.

In stroke, microglia migrate
towards neurons with high
intracellular calcium levels

to reduce excitotoxicity and
neuronal damage. Microglia
also prevent bystander tissue
damage by inhibiting reactive
astrocytes and phagocytos-

ing infiltrating neutrophils.
CXCR4* MDM are recruited
to the site of injury, where they
produce microglia-activating
mediators, IL-1p and ROS, and
stimulate microglia proliferation
and the glial scar formation.
These inflammatory mediators
may also injure neurons and
contribute to secondary dam-
age. CNS-infiltrating Ly6C™
monocytes may also help repair
the damaged BBB via the
production of collagen-4 and
TGF-B1. BBB, blood-brain bar-
rier; CXCR4, CXC chemokine
receptor type 4; CXCL12,

CXC Motif Chemokine Ligand
12; IL, interleukin; MDM,
monocyte-derived macrophage;
ROS, reactive oxygen species;
TGF-p1, transforming growth
factor beta 1

Ly6CM
monocyte

CIJXCR4

Microglia in stroke

Microglial modulation of dysfunctional CNS cellular
responses in stroke

The roles of microglia in the early stages of ischemic injury
have been largely elucidated by experimental models of
ischemic stroke induced by middle cerebral artery occlu-
sion (MCAO), which generates reproducible infarcts in the
middle cerebral artery region and allows reperfusion after
removal of the occluding filament (i.e., transient MCAO).
Although blood flow restoration in transient MCAO does not
accurately depict spontaneous reperfusion in human stroke,
it is a better representation of mechanical thrombectomy or
thrombolysis in the human than endogenous stroke [208]. In
models of transient or permanent cerebral ischemia induced
by MCAO, microglial depletion increased infarct size and
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worsened disease outcome, suggesting that microglia play
a beneficial role in the early phases of stroke. Studies have
suggested that this protective role may include direct cell
interactions with surrounding parenchymal cells, resulting
in the containment and/or prevention of dysregulated neuron
[117], neutrophil [248] and astrocyte [172] responses that
occur following ischemic insult (Fig. 3).

Experimental microglia depletion in animals has pro-
vided insight into the immune processes that protect against
secondary injury, which may also underlie human disease.
Two MCAO studies found an increase in neuronal death
and infarct size after microglia were depleted by continu-
ous oral injection of PLX3397 starting three weeks before
stroke induction [117, 172] (Table 4). Increased tissue dam-
age was linked to increased intraneural calcium levels and
excitotoxic injury in one study, suggesting that microglia
may play a role in protecting neurons from injury associated
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Table 5 Functions and phenotypes of microglia in Alzheimer's disease

RNA

Three microglia phenotypes. All express: Hexb and Cst3

‘Homeostatic’ phenotype: Cx3crl, P2ryl2, Tmemli19, Hexb, Cst3, Cx3crl, Ctsd, Csflr, Ctss, Sparc, Tmsb4x, P2ryl2, P2ryl3,
Clga and Clgb

TREM-2-independent, ‘intermediate state’ microglia phenotype:

1 Tyrobp, Apoe, B2m, Ctsd, Ctsb, Fthl and Lyz2
1Cx3crl, P2ryl2, P2ryl3 and Tmem119

TREM-2 dependent, damage-associated microglia (DAM) phenotype:

11 Tyrobp, Apoe, B2m, Ctsd, Ctsb, Fthl and Lyz2

1Cst7, Lpl, Trem2, Axl, Cstsl, Cd9, Csfl, Ccl6, Itgax, Clec7a, Lilrb4 and Timp2

1l Cx3crl, P2ryl2, P2ryl3 and Tmemli19
(5xFAD at 3 and 8 months, single-cell RNA-seq [179])

Microglia neurodegenerative phenotype (MGnD)

Ll P2ry12, Tmeml119, Gpr34, Jun, Olfmi3, Csflr, Hexb, Mertk, Rhob, Cx3crl, Tgfbrl, Tgfbl, Mef2a, Mafb, Jun, Salll and Egrl

(‘homeostatic’ genes)

1 Sppl, Itgax, Axl, Lilrb4, Clec7a, Ccl2, Csfl and Apoe (‘inflammatory’ genes)
(APP-PS1 at 7, 10 and 17 months. MGnD is also seen in ALS (SOD19%%*4 mice) and in MS (acute EAE), single-cell RNA-seq

[191])

Protein Three microglia phenotypes:

Phenotype 1: Clec7a P2ry12* (not associated with AB plaques)
Phenotype 2: Clec7a°P2ry12% (in close proximity to AP plaques)

Phenotype 3: Clec7a*P2ry12~

Transition from Clec7a to Clec7a!™ to Clec7a™ correlated with increased mRNA expression of Apoe and suppression of homeo-

static molecules
(APP-PS1, immunohistochemistry [191])

Three FCRLS*CD11b* microglia phenotypes:

Phenotype 1: Clec7a”

Phenotype 2: Clec7a™

Phenotype 3: Clec7a’

(APP-PS1, flow cytometry [191])

Iba-1*CD11¢*TIMP2" microglia

Co-localized with AB*, Csfl and Lpl

(5xFAD, immunohistochemistry & smFISH® [179])
Neuro-

protective
roles

neurites [295]

Microglia encircle AP plaques to prevent further growth and dissemination into the parenchyma [63], reducing damage to local

Microglia may contribute to the phagocytic and enzymatic clearance of the Ap plaque deposits [82]

TREM?2 expressed by damage-associated microglia is thought to directly recognise AP to enhance engulfment and lysosomal deg-

radation of the protein [338, 357, 366]

TREM2-dependent microglia functions are required to prevent seeding of plaques earlier in AD, whilst later on enhance the con-

solidation of A into highly compact plaques [222]

Neuro-
toxic
roles

294-296]

Microglia cause synapse and neuronal damage, injury, or loss, resulting in memory loss and cognitive decline [152, 284, 291,

Microglia contribute to the formation and growth of A plaques [294, 295]

Microglial secretion of tau-laden exosomes help seed and spread tau aggregates throughout the CNS [12, 61]

Single molecule fluorescence in situ hybridization

with high intracellular calcium levels [117] (Fig. 3). Impor-
tantly, the increased infarct damage did not occur if micro-
glia were allowed to repopulate by removal of PLX3397
before stroke induction, thus emphasising their protective
role in stroke. Microglia rapidly migrated to infarct sites and
formed contact interactions with neurons with high intracel-
lular calcium levels, likely reducing excitotoxic damage. At
the interface between microglia and neurons, the purinergic
receptor P2RY 12 was highly expressed. P2RY 12 is consid-
ered a homeostatic microglia marker because of its down-
regulation in neurogenerative and neuroinflammatory mod-
els, including amyotrophic lateral sclerosis, AD (Table 5)

@ Springer

and MS (Table 6) [174, 179, 191, 214], which have been
more extensively investigated than encephalitis (Table 3)
and stroke (Table 4). Considering P2RY 12 is upregulated
by microglia in stroke [117] and is required for the control
of viral spread in PRV encephalitis [96], it may not be a
general homeostatic microglia marker as currently proposed.
The transcriptomes and proteomes of microglia and MC in
viral encephalitis, stroke, AD and MS are listed in Tables 3,
4,5, 6, respectively.

In a different MCAO study, enhanced brain injury in the
absence of microglia was associated with an increased pro-
duction of pro-inflammatory mediators by astrocytes (IL-1a,
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IL-1p, iNOS, IL-6 and TNF), implicating a role for microglia
in inhibiting dysfunctional astrocyte responses [172] (Fig. 3
and Table 4). Moreover, after PLX3397-mediated micro-
glia depletion, MCAO in either Rag2” ¢~ mice (which
lack T, B, Natural Killer and Natural Killer T cells), or in
mice treated with Bindarit (which inhibits CCL2-mediated
monocyte infiltration) resulted in enhanced infarct injury
compared to mice without PLX3397, emphasizing that the
absence of microglia, rather than the presence of a particular
infiltrating immune cell type, exacerbates brain injury [172].

Besides the described protective interactions with astro-
cytes and neurons, microglia also exert beneficial func-
tions in the brain by phagocytosing infiltrating neutrophils,
thereby preventing their pathogenic accumulation and sub-
sequent damage to the surrounding tissues and vasculature
[248]. Indeed, inhibition or genetic deletion of neutrophil
elastase, blocking neutrophil recruitment and/or infiltra-
tion, or inhibiting neutrophil-derived matrix metallopro-
teinase-9, all reduce lesion progression [170, 218, 248,
301]. Accordingly, depletion of microglia before stroke
induction increased neutrophil numbers in the CNS and
exacerbated tissue damage [248]. Thus, microglia cru-
cially minimise pathogenic neutrophil accumulation to
limit ongoing secondary oxidative damage of surround-
ing re-perfused vasculature and brain tissue [248] (Fig. 3
and Table 4).

However, the beneficial roles played by microglia after
ischemic stroke are mostly based on studies in young mice,
which do not reflect changes in the aging immune system
that would occur in the majority of stroke patients. Stud-
ies investigating these age-related changes in the immune
responses to MCAO have demonstrated that, although older
and young mice have a similar inflammatory response pro-
file, the magnitude of this response differs considerably [9].
Given that aging microglia exhibit greater inflammatory
alterations [292], it is possible that these cells carry out del-
eterious immune responses following ischemic injury that
are not evident in young animals.

Pathogenic role of microglia in the context of diabetes
co-morbidity

Importantly, approximately 70% of stroke patients have
pre-existing conditions, such as diabetes and high blood
pressure, with diabetes being associated with significantly
worsened recovery and post-stroke cognitive impairment
[168, 315]. To study the link between microglia, stroke,
and diabetes, Jackson et al. [168] used an intracerebroven-
tricular injection of short hairpin RNA to silence Csfrl and
ablate microglia prior to the induction of stroke via transient
MCAQO in young mice with diet and streptozotocin-induced
type 2 diabetes mellitus [168]. It is known that an increased
ratio of pro- to anti-inflammatory microglia in diabetic
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animals correlates with the development of post-stroke cog-
nitive impairment [167]. In contrast to studies in mice with-
out comorbidities, microglial depletion in diabetic animals
decreased ischemia-mediated brain injury (Table 4), indi-
cating a diminished protective role of microglia in diabetes
[168]. This study emphasizes the importance of pre-existing
co-morbidities in both understanding the role of microglia in
stroke pathology and the potential translation of microglia-
targeted treatments for this disease. Microglia studies in
older mice with diabetes or other systemic cerebrovascular
illnesses, such as hypertension or atherosclerosis, are criti-
cal for translating these findings to clinical practice, as the
majority of ischemic strokes occur in older individuals [24,
95] with underlying cerebrovascular disease [14].

Monocytes in stroke
Monocyte contribution to tissue damage and repair

The immune response to ischemic injury critically involves
the infiltration of peripheral immune cells, including mono-
cytes and neutrophils [116, 171]. Monocyte activation has a
significant impact on disease outcome following CNS injury,
in particular, the secondary damage following ischemic
stroke. The differential protective or pathogenic roles of
monocytes in experimental models of ischemic stroke, as
well as their associated phenotypes, are compared in Table 4.

In response to ischemic injury, infiltrating monocytes
may adopt functional phenotypes facilitating debris clear-
ance, wound healing, and tissue repair (i.e., pro-resolution
phenotypes) [360]. However, these cells may also adopt a
pro-inflammatory phenotype whose sustained production
of inflammatory mediators risks secondary damage to sur-
viving tissue. Following ischemic injury and haemorrhagic
stroke, for instance, monocytes recruited to the injured
brain cause inflammatory damage and functional impair-
ment via their sustained production of TNF and IL-1f [81,
143, 192, 269]. The pathological role of these cells is further
emphasized by studies in CCR2-deficient mice in which the
reduced monocyte influx into the injured brain substantially
reduces inflammation and secondary damage [81, 192].
However, the same cells subsequently contribute to tissue
repair. In CCR2-deficient mice or following early mono-
cyte depletion by clodronate liposomes in stroke, the result-
ant reduced expression of tissue repair proteins, including
TGF-P1 and collagen-4, was associated with neurovascular
unit instability and later haemorrhagic transformation [127],
demonstrating the importance of these cells in healing after
stroke.

Thus, although a pro-inflammatory monocyte pheno-
type is thought to contribute to secondary damage, this
functional specification can also activate immune system
processes involved in wound healing and tissue repair
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[360]. This may involve other cell types. For instance,
microglial activation and proliferation is necessary in
the formation of a glial scar around injured tissue [271].
Using two experimental models of ischemic stroke (pho-
tothrombosis and transient MCAO), it was recently sug-
gested that monocytes expressing inflammatory mediators
IL-1P and Cybb-derived reactive oxygen species (ROS)
facilitated microglial proliferation and enhanced wound
healing [343]. This damaging phenotype was, however
tightly regulated. Following their initial pro-inflammatory
activity, monocytes were physically enclosed in a glial scar
facilitated by chemotactic CXCR4-CXCL12 signalling,
thereby limiting monocyte-driven secondary injury [343].
Notably, the tissue infiltration patterns of monocytes and
microglia differed among stroke models, potentially sug-
gesting that multiple experimental models are necessary to
fully comprehend the activities of these two cell types in
disease. Nonetheless, the beneficial outcome of myeloid-
mediated inflammation in these ischemic stroke models
contrasts with that of experimental models of MS or viral
encephalitis, where a sustained oxidative stress phenotype
is detrimental [122, 224], and points towards the impor-
tance of local regulatory mechanisms in preventing aber-
rant inflammatory damage.

The seemingly paradoxical protective and pathogenic
functions of monocytes may be further explained by the
recruitment of multiple populations that differentially con-
tribute to damage and repair as monocytes. Such populations
may be differentially recruited to the site of ischemic injury
in a manner similar to that occurring in mechanical injury:
following mechanical spinal cord injury, ‘protective’ pro-
resolution monocytes (Ly6C°CX3CR1™) were thought to
gain access to the CNS from the choroid plexus and migrate
to the injured spinal cord parenchyma through the central
canal, whereas detrimental pro-inflammatory monocytes
(Ly6CMCCR2*) were proposed to transmigrate via the spi-
nal cord leptomeninges in a CCL2-dependent manner [281].
The differential expression of Ly6C may underlie these dif-
ferences, as high expression of Ly6C would better enable the
emigration of inflammatory cells from the CNS leptomenin-
geal vasculature [310]. CNS region-specific signals may also
shape their eventual functions within the CNS, with those
trafficking through the choroid plexus and cerebrospinal
fluid encountering stimuli that shape more anti-inflamma-
tory roles [281]. Whether these CNS environments shape
distinct cellular functions of infiltrating cells following
stroke warrants further investigation. Indeed, in other disease
models such as EAE, it is evident that the cytokine milieu
in the choroid plexus shapes the pro- or anti-inflammatory
specification of infiltrating monocytes [164].

It is crucial to remember that inflammation can be both
harmful and beneficial to recovery from ischemic injury,
and that any therapeutic window may be limited to a specific

time period when inflammation is pathogenic. Although this
therapeutic window is well-defined experimentally [171],
the time course of lesion evolution is protracted in humans
and complicated by recurrent ischemic episodes and sys-
temic co-morbidities [223]. The roles, phenotypes, and tran-
scriptomic profiles of both microglia and monocytes in ani-
mal models that better re-create the disease co-morbidities
that lead to, and modulate the immune response to, ischemic
stroke are therefore critically needed.

Neurodegeneration

Alzheimer’s disease is a chronic neurodegenerative disease
causing progressive and irreversible cognitive decline.
Disease onset can occur at < 65 (familial early-onset)
or > 65 years of age (sporadic late-onset), with the latter
afflicting more than 95% of patients [87, 213]. Histopatho-
logically, AD is characterized by the formation of intra-
neuronal neurofibrillary tangles consisting of the hyper-
phosphorylated microtubule protein, tau, and extracellular
deposits of plaques of amyloid-p (Ap), a breakdown prod-
uct of the transmembrane amyloid precursor protein (APP)
[241]. A transgenic system that reproduces either of these
two characteristic AD pathologies is the most common
approach to modelling AD in mice. In transgenic mouse
models, AP plaques are generally generated by mice over-
expressing five human familial AD gene mutations (i.e.,
5xFAD mice) or the APP-presenilin 1 gene (i.e., APP-
PS1 mice) [142]. Tauopathy is generally modelled in mice
over-expressing human transgenic tau. However, these ani-
mal models do not reflect the entire biology of human AD,
which presents inherent limitations to the translation of
laboratory findings into a clinically relevant setting.

Relevance of murine models to human AD

Modelling all aspects of AD pathology in an experimental
animal setting is difficult. This can be attributed in part to
(1) the disease being unique to humans, as far as we know,
(2) the multifactorial nature of AD having both genetic
and environmental etiologies, and (3) the high variabil-
ity in disease onset, development and progression among
patients [86].

Currently, transgenic mouse lines are the most common
experimental model for AD, despite each only recapitu-
lating one or few aspects of the human pathology. These
transgenic mice express human genes that result in the
formation of amyloid plaques (APP or PSEN1) and/or neu-
rofibrillary tangles (MAPT), with other aspects of human
pathology incompletely represented, such as memory-
associated cognitive impairments, contribution of aging,
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neuronal loss, widespread neurodegeneration and regional
brain atrophy [86, 325]. It is thus little wonder that the
success rate of drugs that have gone through clinical tri-
als from 2002 to 2012 show a high failure rate (~99.6%)
[69]. In 2020, there was ~40-fold and ~ threefold decrease,
respectively, in the number of drugs in development for
AD, compared to those in development for malignant neo-
plasms and diabetes [68]. The high failure rate of agents
in clinical trials and relatively limited drug development
for AD reflect the biological disconnect and thus restricted
translatability between mouse models and human pathol-
ogy. This is further exacerbated by the limited avail-
ability of human biomarkers, longer trial durations and
prohibitively high trial costs [68, 86, 102]. Also feeding
into this is the fact that mouse models are largely based
on the expression of mutations associated with familial
early-onset AD, while drugs tested in clinical trials are
mainly in patients with sporadic late-onset form of AD.
It follows that conclusions based on the interpretation of,
and extrapolation from mouse findings should be carefully
contextualized and made with caution. However, impor-
tantly, notwithstanding their limitations, mouse models
have provided substantial insight into the contribution of
specific features (i.e., amyloid or tau) in the pathogenesis
of AD. Thus, understanding the precise limitations of each
model is necessary to better translate laboratory findings
into clinically relevant settings.

However, with the increasing incidence of AD and with
it the increased estimated global expenditure needed for AD
care, there is an urgent need to develop models that better
reflect the human disease and inform effective preventive
and interventive treatment [258]. Improved models of AD
are underway. These include the use of primates [276], brain
organoids [249] and further transgenic mouse lines. To sup-
port this, the National Institutes of Health established the
Model Organism Development & Evaluation for Late-Onset
Alzheimer’s Disease consortium with the aim of develop-
ing 50 new rodent models based on human datasets and that
better reflect AD pathology, with all data generated being
publicly available.

Microglia in Alzheimer's disease

In 1908, Alois Alzheimer argued that microglia were impli-
cated in the pathogenesis of AD, based on observations of
altered cell morphology in CNS tissue from patients [7].
Changes in microglia/macrophage morphology and den-
sity have been further linked to a variety of neurodegen-
erative illnesses, including Parkinson's disease (Fig. 1c)
and amyotrophic lateral sclerosis (Fig. 1d—f), in addition
to AD (Fig. 1g—i). The likely involvement of microglia in
AD pathology, however, was not fully appreciated until
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the development of genome-wide association studies. This
revealed that 60.4% of AD-risk single-nucleotide poly-
morphisms are highly expressed by microglia [212, 364],
including Apoe, Trem2, Abca7, Cd33 and Crl [221]. More
recently, single nuclei RNA sequencing on AD brains
showed that out of seven cell types, gene expression changes
were shown only in microglia [119]. Given the demonstrable
link between microglia-expressed genes and AD, many stud-
ies have attempted to elucidate their precise functions in this
disease using murine models, although remarkably, genetic
studies have implicated microglia in almost every defined
neurodegenerative disorder [221].

Role of DAMPs and microglia in promoting low-grade
inflammation and neurodegeneration

While DAMPs are thought to be beneficial in acute inflam-
mation by protecting the CNS from pathogen evasion and
tissue damage [178], in AD, the chronic release of DAMPs,
mitochondrial-released DAMPs and pro-inflammatory mol-
ecules contributes to the onset and progression of neuro-
degeneration [57, 76, 97, 149, 194, 270, 304, 333, 345].
The underlying mechanism likely involves the binding of
these molecules to microglia-expressed receptors, caus-
ing self-perpetuating microglial activation with sustained
release of pro-inflammatory mediators. This is thought to
divert microglia from performing house-keeping functions,
promoting a low-grade inflammatory state and CNS damage
[149, 333]. Collateral damage to proximal neurons perpetu-
ates this cycle via the further release of DAMPs [57] and
potentially the progression of neurodegeneration. Indeed, the
DAMP, high-mobility-group box protein 1 is elevated in the
sera of AD patients and correlates with levels of Af in the
CNS [97]. Notably, microglial-expressed Mac-1, a potential
receptor for high-mobility-group box protein 1, is increased
in expression in AD brains [5] with ligand-receptor bind-
ing resulting in the production ROS and pro-inflammatory
molecules [110]. This suggests a role for this DAMP in per-
petuating chronic inflammatory signalling in the CNS and
the progression of AD [57].

It is unclear what causes the initial release of these mol-
ecules, which sustains a low-grade inflammatory response
in the brain. However, studies have shown that cellular
aging, infection, traumatic brain injury, systemic inflam-
mation, chronic inflammatory diseases, obesity and poor
oral health occurring during middle adulthood can lead to
increased pro-inflammatory signals in the periphery, which
may contribute to glial activation and the onset and/or per-
petuation of neurodegeneration [93, 105, 149, 333]. Indeed,
lipopolysaccharide (a major gram negative bacterial cell
wall component)-induced inflammation in mice with amy-
loidosis or tauopathy increased neuropathology [187, 283].
Targeting neuroinflammatory processes and the activation of
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Fig.4 Protective and pathogenic roles of monocytes and micro-
glia in neurodegeneration. a Protective functions. In AD, micro-
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spread, respectively. b Pathogenic functions. Microglia phagocytose
C3-tagged synaptic termini via C3R, leading to neurodegeneration

innate immune responses which are paradoxically protective
in acute inflammatory scenarios may provide a necessary
therapeutic approach to AD.

Role of microglia in the formation and clearance of A
plaques

Both in human AD and its mouse models, microglia sur-
round AP plaques [216, 226, 365]. Although more human
studies are required, the local function of these cells appears
to be bidirectional, with microglia having both protective
and pathological functions. Microglia are thought to con-
tribute to the formation of plaques while also compacting
and clearing AP deposits to prevent damage to neighboring
neurites. See Table 5 for a comparison of the protective and
pathogenic roles of microglia in AD, as well as their disease-
associated transcriptomes and immune profiles.

Microglia contribute to the phagocytic and enzymatic
clearance of AP plaques [82] in concert with resident
perivascular macrophages [311, 356]. These cells also have
a role in compacting AP to potentially prevent their spread
and impact on local neurites. Indeed, microglia depletion in
four-month-old humanized APP mutant knock-in homozy-
gote (APPN--6-F) mice resulted in reduced plaque compac-
tion and increased plaque volume, number, and size, dem-
onstrating that microglia play an essential role in plaque
compaction between four to six months of age in mice [61].
The increased AP burden with age suggests that microglia
become senescent and are unable to phagocytose Af or that

Pre-synaptic

Post-synaptic
(WNV EAE/MS, AD)

@KV

C3-mediated
synapse
phagocytosis

AB/Tau plaque l

Plaque formation & growth

Neurodegeneration

Microglia Cognltlve Dysfunction

and cognitive dysfunction in post-infectious encephalitis, AD, EAE
and MS. Af amyloid beta; AD Alzheimer’s disease; C3 complement
component 3; C3R complement component 3 receptor; EAE experi-
mental autoimmune encephalomyelitis; MS multiple sclerosis; ZIKV
Zika virus

their ability to do so becomes latent [101, 302]. Indeed,
microglia ablation in AD mouse models at 10 months of
age had no impact on plaque burden, suggesting that these
cells are dispensable for A clearance and plaque formation
in the late stage of disease [296]. To overcome this so-called
latency, administration or expression of IFN-y, TNF or IL-6
in the mouse CNS reduced AP deposition [48—50], poten-
tially stimulating microglial phagocytosis and clearance of
AP from the brain.

In contrast to the protective roles of microglia in AD,
such as the clearance and compaction of Af, microglia
can also contribute to AP deposit formation early in dis-
ease. Microglial ablation using PLX3397 in two-month-
old 5xFAD mice [294] or PLX5622 in 1.5-month-old
5xFAD [295] mice prevented intraneuronal amyloid and
neuritic plaque formation [294] and significantly reduced
plaque formation [295], respectively (Fig. 4 and Table 5).
Ablation of microglia in younger mice before develop-
ment of cerebral amyloidosis thus reduces AP deposition
[294], while ablation of microglia later in disease (i.e.,
in 10-month-old 5xFAD mice) [296], does not alter AP
load. Interestingly, a fraction of microglia in the thalamus
were resistant to 10 weeks of PLX5622 treatment and were
associated with the few plaques that had formed [295].
Thus, even a small number of microglial cells are sufficient
to initiate plaque pathology. It has been suggested that
microglial lysosomes provide a suitable environment for
Ap aggregation. Indeed, AP aggregates were found within
the lysosomes of microglia in brain regions where plaques
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were not yet formed in non-PLX5622-treated SXFAD mice
[295]. However, AP deposition can also be observed in
regions of the brain devoid of microglia, including the
dura mater, choroid plexus and perivascular space [71,
253], suggesting that microglia may not be the only cells
contributing to AP plaque aggregation.

Role of microglia in tau-related pathology

It has recently been suggested that AD progression is better
correlated with tau pathology, neuronal degeneration, AP
spreading and synapse loss, rather than AP detection alone
[222]. While the role of microglia in tau-related pathol-
ogy is relatively understudied compared to their role in Ap
formation and clearance [328], it has been suggested that
microglia may also contribute to tau pathology. Microglial
expression of pro-inflammatory mediators and release of
extracellular vesicles have been shown to promote the patho-
logical spread of tau.

Consistent with this, tau pathology was reduced by inhib-
iting microglial activation via overexpression of CX3CL1,
a chemokine released by neurons that binds to microglial-
expressed CX3CR1 [240] or by administration of anti-
inflammatory drugs [113]. Conversely, promoting microglia
activation via lipopolysaccharide- or virus-induced inflam-
mation promoted tau pathology [187, 304]. Fascinatingly,
microglial activation can even induce tau accumulation in
wild-type mice with no induced tauopathy [112], strongly
supporting the importance of microglia-mediated inflamma-
tion in initiating tau pathology. Although the exact mecha-
nisms that cause microglial activation are unknown, it is
possible that the low-grade chronic inflammation (described
above) that occurs in middle-aged individuals promotes
neuroinflammation and the progression of tau pathology
[57, 97, 194, 304, 333]. Tau oligomers and monomers can
also activate NLRP3 inflammasomes, further perpetuating
microglial activation [162] and potential progression of tau
pathology. While more human studies are required, it is clear
from murine models that microglia have an indirect role in
promoting tau accumulation via expression of pro-inflam-
matory mediators.

Microglia have also been implicated in the pathological
spreading of tau via the release of extracellular vesicles [12,
61, 328]. While human and microglia can internalise aggre-
gated or hyperphosphorylated tau for protein degradation,
they can also release incompletely degraded or un-neutral-
ised forms back it into the extracellular space, promoting
the spread of tau [12, 32, 36, 108, 153]. Indeed, depletion of
microglia in mice injected with tau-expressing adeno-associ-
ated virus reduced tau propagation, which was hypothesized
to occur by ablating microglial-mediated phagocytosis and
subsequent re-secretion of tau-laden exosomes for the patho-
logical spread and accumulation of tau.
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To study the mechanistic link between microglial-medi-
ated tau propagation and amyloid accumulation, microglia
were depleted in APPNE=S—F mice injected with tau-express-
ing adeno-associated virus [61]. Intriguingly, microglia were
shown to be three times as phagocytic and three times more
likely to release tau-containing extracellular vesicles when
situated near amyloid plaques [61]. This was associated with
enhanced tau propagation in mice with amyloidosis, com-
pared to wild-type mice without amyloidosis [61], highlight-
ing the importance of studying both amyloid- and tau-related
pathological features of AD in one model. Interestingly,
microglia depletion had no effect on tau in aged mice [27].
This could suggest that microglia become senescent and can-
not phagocytose tau, potentially leading to decreased extra-
cellular vesicle production and tau spread. However, results
from this study may have been confounded by incomplete
microglial depletion, which was only ~30% [27].

Tau accumulation is frequently associated with synaptic
loss. Microglia can phagocytose tau-laden synapses or entire
neurons [36, 75], promoting neurodegeneration and memory
loss. As previously mentioned, microglial-expressed com-
plement components, including C1q, are thought to bind to
synapses and enable phagocytosis by microglia [75, 103].
While more investigation in the human is required to confirm
microglial association with C1g-mediated tagging of syn-
apses, in normal aging [300] and in tauopathy patients [75],
Clq is dramatically upregulated and is shown to co-localize
with hyperphosphorylated tau, plaques and neurofibrillary
tangles in AD brain sections [1, 219, 282]. Together, this
work suggests that while microglia attempt to perform physi-
ological functions, such as clearing pathological tau and A
aggregates, these proteins may be incompletely degraded
and re-secreted into the extracellular space to spread protein
accumulation. These proteins can also bind microglial recep-
tors, promoting pro-inflammatory signalling and diverting
microglia from house-keeping functions, thereby causing
a self-perpetuating chronic inflammatory response that
induces further protein accumulation and tau seeding.

The‘universal’ neurodegenerative microglial phenotype

Recent transcriptomic studies have identified a subset of
microglia that adopt unique transcriptional and functional
signatures, termed ‘disease-associated microglia’ (DAM)
[179] or ‘microglial neurodegenerative’ (MGnD) phenotype
during neurodegeneration [191]. These microglial signatures
are characterised by the downregulation of homeostatic
genes (P2ryl2, Tmeml 19, Salll and Cx3crl) and upregula-
tion of an inflammatory program (Trem2, Apoe, Axl, Lpl
and Clec7a) (Table 5), several of which have been identi-
fied in genome-wide association studies linked to human
AD. The DAM phenotype has been proposed to represent a
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universal and intrinsic microglial response program to CNS
disease, since it appears to be retained across a number of
neurodegenerative and non-neurodegenerative diseases [74,
291]. However, it remains unclear if this intrinsic response
program specifically identifies a functionally meaningful
subset, and whether it is beneficial or detrimental to disease
pathogenesis.

Several studies have suggested that the microglial DAM
signature is protective in neurodegeneration. This has
been highlighted by the importance of TREM?2, a recep-
tor expressed by DAM/MGnD, which exerts its protective
function in AD via ligation of ApoE (apolipoprotein E),
which binds to loose AP aggregates, or direct ligation of
AP oligomers [286, 295, 338, 357, 366]. This process ena-
bles lysosomal degradation and phagocytotic trimming of
AP by surrounding microglia, which may be crucial to the
compaction (but not removal) of developing A deposits
to protect neurons from injury (Table 5). Accordingly, AD
patients carrying mutations in TREM2 genes display less
compact AP plaques and fewer plaque-associated microglia
but enhanced tau pathology and neuritic plaques [191, 361].
Similarly, in mice with cerebral amyloidosis, genetic abla-
tion of TREM2 abrogated the MGnD phenotype and reduced
the microglial response to plaques [191]. This supports a
protective role for the DAM/MGnD microglial phenotype,
with TREM?2-dependent functions potentially required ini-
tially to prevent seeding of plaques, whilst later enhancing
the consolidation of A into compact aggregates to protect
neurons from Ap-induced injury. This protective function
appears to be independent of other microglia-mediated func-
tions which are detrimental to neurons, such as their contri-
bution to synapse loss.

Other studies instead argue that the microglial DAM/
MGnD phenotype is damaging. It is known that homeostatic
microglia support neuron maintenance [211, 306]. Thus,
the phenotypic transition observed in DAMs may harm
neurons by causing low-grade inflammation and lowering
neurotropic support, which may contribute to increased tau
phosphorylation [82]. In support of this, gene expression
analysis showed that pathways related to neuronal function
(i.e., glutamate receptors, synaptic vesicles, and neuronal
membranes), were downregulated in the hippocampus of
5xFAD mice [295]. This pattern was reversed in the absence
of microglia, suggesting that these cells restrict gene expres-
sion pathways crucial to neuronal function in AD [295].
Furthermore, complement activation, which is important
for microglial phagocytosis, can exacerbate synaptic loss
[152, 284, 291] and contribute to memory loss and cogni-
tive decline [75] (Table 5). Consequently, microglia deple-
tion before or after the formation of AP pathology in mouse
models of AD resulted in improved contextual memory,
further implicating microglia in neuronal and/or synaptic
loss [294-296].

The ability of microglia to return to homeostasis during
AD may be impaired by the downregulation of the micro-
glial receptors CX3CR1 and CD200R, which bind to neu-
ronal ligands and act as immune checkpoints that maintain
microglia homeostasis [30]. Furthermore, DAM-expressed
factors, such as apolipoprotein, colony-stimulating factor
1 (CSF1) and secreted phosphoprotein 1, act as autocrine
ligands on DAM-expressed receptors, together sustaining
and perpetuating the neurodegenerative phenotype [291].
Thus, both protective and pathogenic functions are likely
to be carried out simultaneously by the DAM phenotype.

Relevance of DAM/MGnD to human AD

The importance of the DAM/MGnD phenotype must be
more carefully considered in the context of human pathol-
ogy. In contrast to mouse studies, single cell nuclei extrac-
tion from frozen human brain tissue revealed 13 distinct
microglial clusters [119]. While a population of clusters,
namely ADI, closely reassembled the mouse DAM/MGnD
phenotype, it was only abundant in human samples contain-
ing AP and not tau. Conversely, AD2 did not overlap with
AD1 and was more frequently observed in human brain
samples showing both tau and amyloid pathology [119].
These data highlight the usefulness of amyloidosis mouse
models in exploring the human AD1 (DAM-like) pheno-
type; however, it demonstrates that the additional presence
of tau in the CNS could induce a different microglial phe-
notype. This may explain why single-cell RNA-seq analysis
on 16,242 live microglial cells isolated from the aging and
AD human brain demonstrated an overall weak correlation
with the DAM signature [246]. Together this work dem-
onstrates, firstly, that there exist other microglial subsets
in AD besides the DAM/MGnD phenotype, and secondly,
that human microglia are heterogenous, thus limiting the
translation of the DAM signature from animal models. This
therefore highlights the need for improved mouse models
that better replicate human AD and/or that further investiga-
tion is required of other non-DAM/MGnD phenotypes in the
diseased mouse brain.

In support of these conclusions, other microglial phe-
notypes beyond the DAM/MGnD have been discovered
in murine models of CNS pathology [106, 264]. Perhaps
these different microglial transcriptional programs feature
in different aspects of AD pathology, as shown in a human
study where it was thought that one microglial transcrip-
tional program contributed to tau pathology and two others
to f-amyloid pathology [252].

The role of microglia in AD is clearly complex. Neverthe-
less, despite the disconnect between human and mouse mod-
els, without experimental modelling, we would never have
understood certain aspects of the human pathology. Cur-
rent murine models suggest that microglia contribute to the
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formation of plaques and tau aggregates, as well as neuronal
damage and synapse loss. On the other hand, microglia have
arole in phagocytosing pathological tau and compacting Ap
aggregates to prevent local neuritic damage. This may reflect
an overall attempt to protect the brain by slowing down dam-
age, but ultimately persistent and low-grade inflammatory
signals, as well as the continued accumulation of Ap and tau
aggregates, interfere with CNS functions. Taken together,
several lines of evidence indicate that microglia play a sub-
stantially pathogenic role in AD, which appears to be in stark
contrast to the overall effect of these cells in viral encepha-
litis and stroke. One obvious explanation for this lies in the
acute versus chronic nature of these diseases.

Monocytes in Alzheimer's disease

The role of peripherally derived monocytes in neurodegen-
erative disorders such as AD has long been debated. It is
unclear if and to what extent monocytes infiltrate the brain
in neurodegenerative disorders, which feature low-grade
inflammation rather than the severe, acute inflammation
seen in viral encephalitis and ischemic stroke. This problem
is complicated further by the difficulties of distinguishing
peripherally-derived monocytes from resident microglia in
human tissues histologically (Fig. 1g—i), as previously noted
in other diseases.

The contentious involvement of monocytes in AD
pathology

Findings supporting a neuroprotective role for monocytes in
AD pathology are conflicting and have been confounded by
the use of experimental systems that condition the brain for
monocyte infiltration, thereby preventing the accurate rep-
resentation of disease pathophysiology. For instance, studies
utilizing whole body irradiation chimeras, an experimental
technique that is now recognized to condition the brain for
monocyte infiltration [2, 3, 230], as well as transplant of
BM-derived cells, reported that Ly6C™ monocytes infiltrate
the AD mouse brain and accumulate around Af plaques.
These infiltrating cells were thought to ameliorate disease
evolution by phagocytosis and clearance of AP from the
brain parenchyma [287] or by promotion of CCR2-mediated
microglial accumulation in amyloid plaques and degradation
of AP [89]. Although it is unclear whether transplanted cells
or monocytes engrafted the AD brain, this hypothesis was
supported by observations that CCR2 deficiency worsened
AD pathology [89, 238], presumably due to an inability to
recruit Ly6C™ monocytes from the BM [280]. However, sub-
sequent parabiosis experiments using head-protected irradia-
tion chimeras [229] or chemotherapy-induced myeloablation
[227], which avoid the brain conditioning discussed above,
demonstrated that Ly6C™ monocytes are not recruited to
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the brain parenchyma during the course of AD. Subsequent
studies further revealed that parenchymal AP burden is unal-
tered in CCR2-deficient mice [229, 238], further exonerat-
ing Ly6C™ monocytes from the responsibility for clearing
AP in AD. Moreover, in a transgenic CD11b-HSVTK mouse
model, in which ganciclovir administration “paralyses”
CD11b* cells including microglia (i.e., where proliferation
and activation is blocked), engrafted BM-derived monocytes
failed to accumulate around Ap plaques and did not reduce
AP plaque burden [262]. Taken together, these findings sug-
gest that Ly6C™ monocytes either do not infiltrate the brain
parenchyma in large enough numbers to alter parenchymal
AP burden, or these cells do not participate in Af phagocy-
tosis or clearance once in the brain.

Despite their lack of local involvement in the brain, blood
monocytes may play an important role in the periphery. It
is estimated that approximately 50-62% of Ap diffuses into
the blood [252, 261] and is thus cleared from the CNS [336,
353]. Monocytes in the peripheral circulation showed a
reduced Ap uptake capacity with age and in AD patients
[56], implying that impaired Ap uptake by monocytes may
play a role in the aetiology of AD. Several human AD risk
gene variants have been linked to monocytes, including
those related with TREM?2 and CD33 [34, 52], the latter of
which is linked to diminished Ap internalization by periph-
eral monocytes [34].

The importance of peripheral monocytes in A clear-
ance is supported by experimental studies demonstrating
that peripheral Ly6C!® monocytes likely contribute to Af
clearance from the cerebral vasculature, thereby indirectly
reducing parenchymal AP burden [227] (Fig. 4). By intravi-
tal two-photon imaging, patrolling Ly6C'® monocytes were
shown to participate in AP clearance from the leptomenin-
geal vasculature [227]. These cells selectively crawl along
Ap-laden veins and scavenge A from the lumen. Depletion
of these cells by deletion of Nr4al, a transcription factor
controlling the differentiation and survival of Ly6C'® mono-
cytes [144], corresponded with increased AP deposits in the
cortex and hippocampus [227], implicating a critical role for
vascular A clearance by patrolling monocytes. The protec-
tive function of Ly6C'® monocytes in AD may also explain
why CCR2 deficiency exacerbates disease severity [89, 238],
as Ly6C!® monocytes, which differentiate from recruited
CCR2*Ly6C™ monocytes in the bloodstream, would no
longer be recruited to this function [323, 359]. On the other
hand, yolk sac-derived perivascular macrophages also clear
A from the vasculature [147] in a CCR2-dependent man-
ner [229], and impaired A clearance by these cells would
presumably also contribute to the accelerated disease pro-
gression observed in CCR2-deficient mice.

In addition to their role in AP pathology, monocytes may
participate in the low-grade, systemic inflammation that can
accompany aging and cognitive decline in AD. Although
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overall peripheral blood monocyte counts do not appear to
vary over disease course, there are population shifts in mono-
cyte subsets in patients with AD [312]. This is evidenced by
a decrease in classical monocytes (Ly6C™ in mice) and an
increase in intermediate and non-classical monocyte popu-
lations (Ly6C' in mice) with disease progression, which
coincided with a shift in monocyte pro-inflammatory gene
expression (including /L6, TNF and ILLB) [312]. Moreover,
IL-33 signalling shown to reduce synaptic impairment and
subsequent memory deficits in APP/PS1 mice was impaired
in lipopolysaccharide-primed and Ap-stimulated monocytes
from patients with AD dementia [275], further suggesting
that an altered monocyte phenotype may contribute to AD
pathology.

Demyelinating disease

Multiple sclerosis is an inflammatory demyelinating disease
of the CNS, thought to be of autoimmune aetiology, char-
acterised by chronic neuroinflammation and neurodegen-
eration. It involves the progressive loss of oligodendrocytes
and neurons, resulting in motor and cognitive deficits [322,
326]. Clinical displays of MS are highly heterogeneous and
can comprise clinically isolated syndromes, primary pro-
gressive forms and relapsing—remitting patterns, the latter
causing ~ 85% of initial cases and potentially developing into
secondary progressive MS over a span of 10-15 years [309,
346]. Relapsing—remitting MS is characterised by episodes
of neurological impairment followed by stages of remission
and partial neurological recovery, while progressive MS
forms involve progressive neurological impairment without
phases of remission [326, 346]. The extensive infiltration
and activation of peripheral and resident immune cells in MS
suggests these cells are key mediators of lesion formation
[77, 210, 278] (Fig. 1j-1). However, mirroring the heteroge-
neity of clinical presentation, different classes of lesion exist,
depending on disease type, duration, cellular players and
anatomical compartment [205, 256], making this complex
scenario challenging to mimic in a single animal system
[40, 186, 196].

Relevance of murine models to human MS

Similar to other CNS pathologies, MS is a uniquely human
disease, and as such can only be partially modelled in
experimental animal systems [186]. Significant caution is
thus necessary in interpreting results from animal models,
in particular from the widely used murine Experimental
Autoimmune Encephalomyelitis (EAE) model. Inflam-
mation in EAE is primarily mediated by MHC class II-
restricted autoreactive T cells that are induced by injection
of encephalitogenic antigens (e.g., myelin basic protein,

myelin oligodendrocyte glycoprotein, MOG, or proteolipid
protein, PLP), in conjunction with an adjuvant, or passively,
via peripheral administration of encephalitogenic CD4* T
cells [64]. APCs play an important role in the activation
of peripherally-primed T cells, resulting in an inflamma-
tory cascade that leads to oligodendrocyte death, chronic
demyelination, and neuronal loss [64, 77]. While commonly
referred to as a single experimental paradigm, EAE develop-
ment and pathological presentations are critically dependent
on the induction method, animal strain and genetic manip-
ulations [40, 186]. Most groups however, utilize C57B1/6
mice, a strain typically developing an acute, monophasic
disease useful to study the main inflammatory aspects of
acute MS [232]. Depending on the specific model, EAE fails
to fully recapitulate the complex pathological presentation of
MS, including the differential distribution of lesions between
brain and spinal cord, the driving lymphoid cellular com-
ponents, and the relative extent of demyelination in white
matter tracts [265].

Furthermore, most EAE models do not recapitulate the
extensive grey matter pathology observed in patients, which
show a demyelination pattern often characterized by chronic
microglia activation, absence of leukocyte infiltration [46]
and pronounced meningeal inflammation [156]. While novel
models have recently been developed to study this type of
lesion [318], other experimental approaches are better suited
to model a subtype of inflammatory grey matter pathology
observed in early MS cases [256] and displaying tissue-
invading leukocytes supposedly driving local damage [169,
180, 203, 225]. At the same time, even though attempts to
represent a chronic disease course have been made [23], and
mouse strains, such as Biozzi ABH [6] and A.SW [314],
show a clinical development resembling progressive MS,
most EAE models are not suited to mimic primary/second-
ary progressive pathology or general disease chronicity. For
instance, EAE induction in non-obese diabetic (NOD) mice,
often claimed to represent the clinical course of progressive
MS, can be used to study some neurodegenerative aspects of
the disease, but overall it lacks evidence as a valid chronic
model [15]. Taken together, the need remains for novel
experimental approaches that better model progressive and
chronic MS.

Notwithstanding these drawbacks, EAE has proved of
unmatched value for the understanding of several pathologi-
cal mechanisms evidently occurring in the human disease;
furthermore, it still represents the best platform to test novel
therapeutic approaches [186]. Research in EAE models has
for instance directly led to the development of the disease
modifying therapies, glatimer acetate and natalizumab,
while other drugs, such as fingolimod, dimethylfumarate
and alemtuzumab, have been tested and mechanistically
explained, thanks to this model [186]. On the other hand,
an important number of therapies stemming from EAE
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studies, in particular most approaches involving manipula-
tion of cytokine actions, have surprisingly and consistently
failed successful clinical application, once again showing the
context-dependent limitations of EAE [265].

Other aspects of MS, such as demyelination in the rela-
tive absence of adaptive immunity-driven inflammation,
are alternatively studied using chemical- (i.e., lysolecithin-
induced) [352] or toxin- (i.e., cuprizone) mediated demyeli-
nation models [257]. Other groups have instead used diph-
theria toxin-induced death of oligodendrocytes to mimic
the formation of lesions in some early MS cases, showing
oligodendrocyte apoptosis in the absence of immune cell
infiltration [17, 202, 313]. The spontaneous development of
demyelination seen with viral infection, e.g., TMEV infec-
tion, is also a useful model to study specific neurodegenera-
tive characteristics seen in MS [118].

Microglia in multiple sclerosis

Akin to many neuroinflammatory diseases, the “empirical
observation of microgliosis” implicates a role for microglia
in MS pathogenesis [132]. Indeed, the number of ‘activated’
microglia and macrophages correlates with axonal damage
in MS lesions [31, 99, 267, 327]. Interestingly, however,
gene expression patterns from human brain data at the tis-
sue-level did not show an enrichment in MS susceptibility
genes [161]. Extending the analysis to include data gen-
erated from human induced pluripotent stem cell-derived
neurons, astrocytes and microglia, revealed the enrichment
of MS susceptibility genes in microglia but not astrocytes
or neurons [161]. The CLECLI locus implicated a role for
microglia in MS pathogenesis, which was underestimated
in tissue-level brain profiles. The role of microglia in MS
however remains unclear and might be dependent on the
type and chronicity of distinct lesions. Several insights into
microglia function could be inferred from animal studies,
despite obvious limitations and potential species-related cel-
lular differences [138].

Duality of microglial roles in immune or chemical
demyelination

A detrimental role for CNS-resident macrophages in EAE
was first suggested in a transgenic mouse model of so-called
“microglial paralysis” (i.e., where proliferation and ‘activa-
tion’ is blocked) in lethally irradiated, CD11b-HSVTK mice
engrafted with wild-type BM, that showed reduced EAE dis-
ease severity [150]. However, the interpretation of these data
was hampered by the observation that CDI1b-HSVTK ani-
mals also displayed reduced CNS infiltration of peripheral
leukocytes. Considering that CCR2 blockade/deficiency [2,
228], clodronate liposome or immune-modifying nanopar-
ticle administration, all of which abrogate CNS infiltration
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of Ly6C™ monocytes and result in attenuated EAE signs
[121, 233], this implies a key function of Ly6C™ monocyte-
derived cells in EAE development, leaving a potential patho-
genic or protective role for microglia in the CD11b-HSVTK
model unresolved. Subsequently, a study in which mice
were fed high- and low-dose PLX5622 post-EAE induction
showed improved disease signs without affecting periph-
eral immune cell populations. PLX5622-treated mice also
showed an increase in mature oligodendrocytes, suggesting
a role for microglia in regulating oligodendrocyte maturation
[243] (Fig. 5 and Table 6).

The exact role of microglia in EAE is unclear. However,
it appears that microglial ‘activation’ and production of pro-
inflammatory mediators have a role in the pathogenesis of
the disease (Fig. 5). Pellino-1-deficient (Pelil ~/~) mice were
refractory to EAE induction [354] (Table 6). Pelil, expressed
by microglia in the brain and upregulated during EAE, is an
E3 ubiquitin ligase that enhances Toll-like receptor/MyD88
signaling via the degradation of the adaptor protein TRAF3
and the activation of the mitogen-activated protein kinase,
with the consequent induction of several pro-inflammatory
cytokine (/l11b, Tnf, 1112b) and chemokine (Cxcll, Ccl2,
Ccl20) mediators. However, other CNS-resident and infil-
trating macrophage populations may also express Pelil, thus
deficiency of Pelil, which reduces EAE severity, implicates
both microglial and non-microglial cells in the production
of inflammatory mediators and the pathogenesis of EAE.
Further, non-physiological effects, created in the genera-
tion of the Pelil knockout chimera via lethal irradiation and
by disrupting the function of Pelil during development and
adulthood in all cell types cannot be ruled out.

Using more selective tools to target microglia dur-
ing neuroinflammation, Goldmann et al. [129] generated
Cx3cr1€ER  Tak 1" mice, whereby TGF-p-activated kinase
1 (TAK1) was ablated from long-lived CX3CR1" cells
(which include microglia) [129]. TAK1 is a mitogen-acti-
vated protein kinase kinase kinase, upstream from nuclear
factor-kf, which upon activation can induce the production
of cytokines, chemokines and adhesion molecules, contrib-
uting to inflammation and the recruitment of immune cells.
Genetic ablation of TAK1 in long-lived CX3CR1™ cells
attenuated EAE pathology [129]. This was associated with
reduced cellular infiltration into the CNS, reduced myelin
destruction and axonal loss, and suppression of proinflam-
matory genes. Using a more targeted approach to study
microglia, this study supports the pathogenic role of these
cells in EAE via the production of inflammatory mediators.
This is in line with studies using less selective tools, i.e., the
Pelil knockout chimera, mentioned above.

More recently, using single-cell technology, a subpop-
ulation of microglia was identified in the CNS of mice at
the onset of EAE which produced ROS [224]. The pro-
duction of ROS contributes to oxidative stress and injury
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Fig.5 Protective and pathogenic roles of monocytes and microglia
in autoimmune neuroinflammation. a Pathogenic functions. Peli-
mediated microglial expression of pro-inflammatory cytokine and
chemokines can exacerbate inflammatory damage to myelin. GM-
CSF-stimulated moDC activate myelin-reactive T cells and exac-
erbate myelin damage via the production of ROS and IL-1B. iNOS*
MDM producing ROS and NO contribute to myelin destruction but
may also transition to arginase-1" MDM and facilitate the resolution

associated with myelin damage and disease progression in
MS. Using Tox-RNA sequencing to transcriptionally pro-
file ROS-producing cells, Mendiola et al. [224] identified
an oxidative stress signature (Cybb, Ncf2, Ncf4 and Gpxl)
shared by all MC populations and one microglia popu-
lation in EAE [224]. Targeting these populations with
acivicin, which targets y-glutamyl transferase to degrade
anti-oxidant glutathione, decreased disease severity in
four models of EAE and a model of microglia-driven neu-
rodegeneration (induced by a lipopolysaccharides injec-
tion in the substantia nigra) [224]. Thus, this study shows
that at least one subpopulation of microglia in EAE is
neurotoxic, contributing to oxidative stress and pathology.

On the other hand, using Csf/ ™'~ mice to reduce the
number of white matter microglia, lysolecithin-mediated
demyelination resulted in extensive demyelination and
neuronal damage compared to WT controls, suggesting a
protective role for microglia [352]. CsfI '~ animals also
showed enhanced pro-inflammatory astrocytic responses,
indicating that microglia can prevent dysfunctional astro-
cyte responses necessary for the inflammatory-to-regen-
erative switch required for the initiation of remyelination
(Table 6). Thus, while differences could be due to the

 —
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of inflammation (b). b Protective functions. Microglia may stimulate
re-myelination via P2X4R-mediated phagocytosis of myelin debris.
GM-CSF granulocyte—macrophage stimulating factor; /L interleukin;
iNOS inducible nitric oxide synthase; MDM monocyte-derived mac-
rophage; MHC major histocompatibility complex; moDC monocyte-
derived dendritic cell; NO nitric oxide; P2X4R P2X purinoceptor 4;
Peli Pellino E3 Ubiquitin Protein Ligase; ROS reactive oxygen spe-
cies; TH T helper cell

distinct microglial depletion and/or MS models used, this
study nevertheless suggests a protective role for microglia
in promoting remyelination to prevent axonal damage, in
contrast to the previously discussed reports.

Role of microglial CSF1R, TREM2 and P2X4R in EAE
remyelination

As mentioned above, using high- and low-dose administra-
tion of the CSFIR inhibitor, PLX5622, Nissen et al. [243]
revealed a pathogenic role for microglia in EAE, as clini-
cal presentation of the disease was reduced upon microglial
depletion. Seemingly paradoxically, stimulation of CSF1R
was also protective in EAE [347]. Recombinant IL-34 or
recombinant CSF1 injected intrathecally via the cisterna
magna ameliorated EAE, suppressing disease progression
and severity and reducing demyelination and oligoden-
drocyte loss (Table 6). Notably, this corresponded with
the expansion of CD11c" microglia, a population absent
from the homeostatic CNS parenchyma but described to
emerge in postnatal development in the neonatal brain,
in cuprizone-induced demyelination, and in mouse mod-
els for neuromyelitis optica and AD [42, 268, 348, 350].
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A CD11c* microglial population further characterized as
CD317" MHC-II* CD39" CD86* was also previously iden-
tified by Ajami et al. [4] in the active phase of EAE and
downregulated in the chronic phase or upon clinical recovery
[4]. These cells seem to be important sources of insulin-
like growth factor 1 (IGF-1) and IFN-f, thus supporting a
neuroprotective role for this population [348-350]. Accord-
ingly, deletion of IGF-1 in these CD11c" cells resulted in
impaired primary myelination in the developing brain [349].
Thus, reduced demyelination seen with CSF1R stimulation
was suggested to be a result of the expansion of a CD11c™
microglia population, promoting myelination of axons.

Interestingly, EAE severity was enhanced in mice
where CD11c* cells were depleted using several genetic
approaches [358]. This was thought to be a consequence of
areduction in inducible Tregs due to depleted CD11c* DCs.
However, the worsened disease outcome in the absence of
CD11c may have been due to the inhibition of protective
functions orchestrated by CD11c* microglia or even MCs.

The purinergic P2 receptor P2X4R, highly expressed
by microglia at the peak and recovery phase of disease,
has also been implicated in inducing efficient remyelina-
tion [362] (Fig. 5 and Table 6). In this work, daily admin-
istration of a P2X4R antagonist from the onset of disease
exacerbated clinical signs of EAE by polarising microglia
into a pro-inflammatory state. Conversely, potentiation of
P2X4R using ivermectin, which modulates ion conduction
and channel gating of P2X4Rs, ameliorated EAE motor
deficits and improved corticospinal tract function. P2X4R
signalling correlated with a higher phagocytic capacity by
promoting an acidic shift in lysosomes, which could favour
myelin clearance required for effective remyelination [362].
This study highlights the disease-ameliorating importance
of myelin phagocytosis by microglia. Similarly, microglia
pre-stimulated with IL-4 ex vivo and transplanted into the
CSF, also resulted in oligodendrogenesis and amelioration
of EAE [43]. However, the interpretation of this experiment
warrants caution, considering the non-physiological condi-
tions associated with an intraventricular injection of in vitro-
derived microglia.

TREM-2 is an important receptor involved in phagocy-
tosis, and upon genetic absence or blockade of TREM-2,
microglia fail to upregulate genes required for lipid metabo-
lism and phagocytosis, resulting in the exacerbation of EAE
[254,255] (Table 6). These studies further support a role for
microglia in the phagocytosis of myelin debris and poten-
tially in subsequent axonal remyelination. Furthermore,
gene expression studies in models of EAE support a role for
microglia in apoptotic cell [199] and debris clearance [355].

The studies above demonstrate the pathogenic role of
microglia in the acute phase of EAE, with polarisation of
microglia to an anti-inflammatory phenotype, or expan-
sion of a CD11c* microglia population, reducing disease
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severity via indirectly promoting remyelination of axons
and/or the phagocytosis of myelin debris. In contrast, in the
toxin-induced model of demyelination in MS, microglia are
protective, since microglial depletion results in an overexu-
berant astrocytic response and extensive demyelination.

Role of microglia in T cell priming and EAE pathogenesis

Microglia have also been implicated in presenting antigen to
T cells in the early stages of disease, given that microglia are
the first cells to take up myelin antigen [293], and can extend
MHC-II" cellular processes at the level of the glia limitans
to potentially contact invading cells [173, 197]. T cell stimu-
lation requires co-stimulation by CD80, CD86 and CD40,
which are upregulated by microglia, although to a lesser
extent than on infiltrating MCs [37]. Recently however, a
series of studies utilizing different transgenic approaches
elegantly showed that MHC-II expression on CNS-resident
microglia/macrophages is dispensable for T cell priming and
EAE pathogenesis [125, 174, 236, 351]. Instead, although
this topic remains debated, the aforementioned studies impli-
cated cDC2 type of APC in the initiation of EAE.

Protective role of microglia in models of progressive MS

To model the clinical presentation observed in secondary
progressive MS patients, the NOD mouse immunized with
MOGs;;s_s5 peptide has often been used. NOD mice induced
with EAE typically develop secondary progression occur-
ring ~ 30 days post immunization, following an acute attack
at 14 days and remission by 20 days [309]. In this model,
initiating PLX3397 treatment at 20 days post EAE induc-
tion increased mortality and exacerbated disease in immu-
nized mice without affecting the timing of the relapse phase.
PLX3397 microglia-depleted, MOGj;5_ss-immunized NOD
mice displayed enhanced inflammation, demyelination,
axonal degeneration and a significant increase in the num-
ber of CD4" and Ki67" proliferating CD4* T cells. These
observations potentially suggest an overall protective role for
microglia in the development of secondary progressive MS,
in contrast to the discussed pathogenic role of microglia in
the acute phase of EAE [309] (Table 6).

However, MOG-immunized NOD mice mirror only some
of the biological processes observed in chronic MS patients,
and caution is obviously needed when translating these
results to MS [15]. In a recent study, EAE was passively
induced via injection of myelin basic protein (MBP)-specific
T cell blasts in LEWzizi rats. These are Lewis rats on a zit-
ter rat background that partly mimic human aging and MS
pathology, showing neurodegeneration, hypomyelination,
microglia activation and iron accumulation [346]. Interest-
ingly, there was no exacerbation of disease, compared to
Lewis controls, contradicting expectations that pre-existing
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microglia activation and pathology (or ‘aging’) would be
amplified and convert EAE into a chronic progressive dis-
ease. Pathology was instead redirected to the mesencepha-
lon, where LEWzizi animals showed T cell infiltration and
enhanced demyelination, presumably due to T cells targeting
pre-damaged areas. While this study suggested that EAE
pathogenesis is unaffected by microglia pre-activation and
‘aging’, further investigations and different models better
suited to investigate chronic cell activation are required to
confirm this.

Monocytes in autoimmune inflammation

Monocytes are recruited to plaques in MS [193] (Fig. 1j-1)
and have long been considered to play a pathological role in
EAE. These cells leave the BM and migrate to the CNS prior
to disease onset, with their infiltration preceding the devel-
opment of paralysis and subsequent clinical manifestations
of EAE [183, 228]. As the infiltration of monocytes into the
CNS is mostly CCR2-dependent, CCR2-deficient mice have
frequently been used to prevent their immigration into the
brain and investigate their role in disease [260]. Accordingly,
initial experiments with CCR2-deficient mice showed that
these animals were resistant to EAE induction [98, 137, 165,
230], which suggested peripheral monocytes play a crucial
role in disease pathogenesis. How monocyte-derived effector
cells contribute to disease pathogenesis is less clear; such
cells may contribute to pathology directly, through inflam-
mation-mediated myelin destruction, or indirectly through
activation of autoreactive T cells via antigen presentation.
The protective and pathogenic functions of monocytes in
MS, along with their respective immune profiles, are com-
pared to those of microglia in Table 6.

An unlikely role: monocyte antigen presentation
for the initiation of EAE

In EAE, the activation of encephalitogenic T cells via the
presentation of the encephalitogenic antigen is a critical step
in disease induction [64]. Antigen is presented by CNS-res-
ident or immigrant APCs, which typically express MHC-II
and co-stimulatory molecules, CD80 and CD86, required for
CD4* T helper (TH) cell activation. Antigen presentation
in EAE has been attributed to DC, however, distinguishing
brain-resident cDC from peripherally-derived monocyte-
derived DC has challenged the accurate characterization of
the antigen-presenting functions of these cell types in EAE
[4, 18, 136, 174, 236]. As both peripherally-derived and
CNS-resident myeloid cells have been implicated in antigen
presentation to autoreactive T cells, definitive evidence of a
non-redundant role for monocyte-derived APC in activating
autoreactive T cells is lacking. It was recently demonstrated
that, in contrast to the resident population, CNS-infiltrating

myeloid cells showed prolonged interactions with T cells in
the CNS and that their expression of MHC-II was essential
for EAE development [174, 236]. Furthermore, myeloid-
derived DC are critical for the activation and differentiation
of TH17 cells [189, 231]. This was further characterized by
mass cytometry demonstrating that monocyte-derived sub-
populations characteristically expressed phenotypes involved
in activating TH1 and TH17 cells at disease onset [4], sug-
gesting these cells play a key role in antigen presentation.

However, the critical antigen-presenting role of moDC
in EAE pathogenesis has been challenged by in vitro stud-
ies demonstrating that moDC are less capable of presenting
myelin compared to cDC, and are therefore redundant in
activating autoreactive T cells [125, 236]. The suggested
relative inability of monocytes to present myelin peptide to
autoreactive T cells has been explained by a lower expres-
sion of H2M [125], a non-classical MHC molecule facili-
tating the processing and presentation of myelin antigen
[289]. Nonetheless, the distinction between moDC and
¢DC in vivo remains challenging because of overlapping
phenotypic markers, complicating the resolution of their
antigen-presenting functions in vivo and warranting further
investigation.

Monocyte subsets participate in inflammatory myelin
damage

In addition to possible antigen-specific T cell-mediated
inflammation, non-specific inflammation also contributes
to myelin destruction in MS [77]. Both CNS-infiltrating
monocytes and resident microglia have been implicated in
this process [133, 242], however, dissecting their respective
functions in disease has proved difficult. To distinguish these
cells during neuroinflammation, Ccr2™::Cx3cri2™ reporter
mice were used to distinguish CCR2* monocyte-derived
cells from the resident CX3CR1" population in EAE, based
on their differential expression of RFP and GFP [355].
Using this method, resident microglia appeared to be more
involved in phagocytosing myelin debris and tissue repair,
whereas MDMs in the immediate vicinity of axons at the
nodes of Ranvier expressed a pro-inflammatory gene signa-
ture [355], suggesting that these cells actively participate in
inflammatory myelin damage.

High-parameter technologies have further elucidated the
heterogeneity of monocyte phenotypes driving inflammatory
damage in EAE. It was recently demonstrated that CNS-
infiltrating monocytes adopt a toxic phenotype that likely
mediates tissue damage [224]. Oxidative stress results from
a metabolic switch during inflammatory activation that sus-
tains the production of inflammatory mediators, such as
ROS and NO [109], which is required for pathogen defence
functions. In EAE, however, this oxidative stress signa-
ture is associated with inflammatory damage, a phenotype
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expressed by more than 50% of CNS-infiltrating monocytes
[224]. The pathogenic function of this oxidative stress phe-
notype was emphasized by experiments demonstrating that
inhibiting ROS production via inhibition of y-glutamyl
transferase, an upstream modulator of the oxidative stress
pathway, reduced disease severity, decreased demyelination
and axon damage, and lowered oxidative stress markers in
multiple rodent models of MS [224], and may be a potential
therapeutic target for human disease. However, these same
cells primed to produce reactive species can be polarized
from a pro-inflammatory (iNOS*) to a tissue-repair (argin-
ase-1") phenotype by the tissue microenvironment and move
inflammatory lesions towards resolution, as demonstrated
by single-cell fate-mapping. Therefore, therapeutic target-
ing of these cell types should be approached with caution,
especially if the same monocytes expressing a pathogenic
phenotype are central to the resolution of inflammation at a
later stage in disease [201].

Single-cell RNA-sequencing has further revealed highly
specialized monocyte subsets with distinctive functions in
disease. Of these subsets, two newly identified Cxcl10* and
Saa3* monocyte subsets expressing a pro-inflammatory sig-
nature were observed at the peak of disease [124]. These
subsets were almost completely depleted by anti-CCR2
antibody administered at the peak of disease and correlated
with an overall clinical improvement, suggesting these cells
possess a characteristic pathogenic potential. Of note, these
pathogenic monocyte subsets may not be derived from
Ly6C" monocytes, since adoptive transfer of BM monocyte
progenitors demonstrated that Saa3* and Cxcl10* monocyte
subsets differentiated from granulocyte-monocyte progeni-
tors and monocyte-macrophage DC progenitors evidently
without passing through a Ly6C" monocyte state [124].
However, this transition is rapid during inflammation [73]
and may have been missed at a 48 h time point, since Ly6C
on monocytes and T cells is crucial for endothelial transmi-
gration [44, 145, 146, 166, 310]. Nevertheless, this high-
lights the continuing development of our understanding of
myeloid cell differentiation and responses in the pathogen-
esis of EAE and other neuroinflammatory diseases.

While monocytes evidently acquire a multitude of phe-
notypes in EAE, the inflammatory microenvironment
appears to be critical in shaping the functional specializa-
tion of these subsets and their contribution to pathology.
This may include cytokines, such as GM-CSF, that are pro-
duced by autoreactive T cells surrounding inflammatory
lesions. Indeed, GM-CSF signalling is thought to induce a
characteristic transcriptional signature in monocytes that is
sufficient to drive disease onset [67, 190]. Monocytes with
defective GM-CSF signalling do not participate in myelin
destruction [135], suggesting the pathogenic activity of this
subset is contingent on GM-CSF signalling by autoreactive
T cells. Temporal and spatial factors in the inflammatory
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microenvironment further contribute to the functional
specialization of infiltrating monocyte-derived cells. For
instance, fate-mapping experiments of infiltrating phago-
cytes revealed that pro-inflammatory polarization (iNOS*)
of these cells occurred predominantly in the spinal cord
lesions [201] and perivascular space [177], whereas those
expressing an anti-inflammatory phenotype (arginase-1*)
resided predominantly in the meninges [164, 201]. iNOS™
cells expressing this characteristic pro-inflammatory signa-
ture predominated during the formation of lesions [201],
but as lesions progressed towards resolution iNOS™ cells
locally adapted their phenotype and transitioned towards an
anti-inflammatory phenotype that was thought to guide EAE
recovery [201]. When injected into the healthy CNS, these
pro-inflammatory iNOS™ cells shifted their phenotype to an
anti-inflammatory Argl1* phenotype within a few days [201],
strongly supporting the notion that the local CNS environ-
ment mediates this phenotypic switch. Indeed, in the absence
of lesion resolution, monocyte-derived cells expressing an
anti-inflammatory phenotype may return to a pro-inflamma-
tory state in response to a chronic inflammatory environment
[124], perhaps reflecting a transcriptional adaptation to the
complex inflammatory lesion environment in which damage
and regeneration are concurrent.

Concluding remarks

CNS inflammation is an accompanying pathological feature
of neurological diseases that can lead to neurodegeneration
and progressive neurological deficits. Although multiple
immune cell types can inflict injury within the CNS paren-
chyma, resident and infiltrating myeloid cells are key regu-
lators of disease outcome. However, elucidating the precise
contributions of each cell subset to neurological diseases
has historically been hampered by the paucity of research
tools available to accurately identify these cells in human
and murine tissue. The development of new reagents and
experimental systems has greatly improved our ability to dis-
tinguish resident from infiltrating myeloid cells in inflamma-
tion, unravelling the interplay and division of labor between
these cell subsets in disease.

In summary, we have highlighted the non-redundant and
often opposing mechanisms by which monocytes and micro-
glia dampen or exacerbate immunopathology in murine and
human studies of autoimmune neuroinflammation, CNS
injury, and viral encephalitis. Although more human stud-
ies are required, findings from animal models suggest that
both cell types can perform both protective and pathogenic
functions, with microglia overall more protective in the
acute phase of viral encephalitis and stroke, and seemingly
more pathogenic in diseases with chronic neuroinflamma-
tion, including AD and MS, as well as in the recovery phase
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of viral infection. In contrast, the functions of monocyte-
derived cells are not as clear-cut. These cells can perform
protective functions that enhance viral clearance and tissue
repair, however, and in general, monocyte infiltration occurs
at the expense of detrimental tissue damage, albeit in many
cases, priming the tissue for repair.

The inherent limitations of animal models must be con-
sidered when extrapolating findings to human disease. None-
theless, this review has emphasized the critical importance
of animal studies in understanding certain elements of CNS
pathology. Currently translating our understanding of mono-
cyte and microglial diversity into clinically useful therapeu-
tic approaches remains a significant challenge. Accurately
identifying temporally dependent myeloid phenotypes and
their associated protective or pathological functions, both
unique and common to various CNS pathologies, remains
a crucial goal of current research. The Grail is in the pre-
cise, confident tailoring and harnessing of this specific
knowledge.
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