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Mapping the breast cancer metastatic cascade
onto ctDNA using genetic and epigenetic
clonal tracking
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Circulating tumour DNA (ctDNA) allows tracking of the evolution of human cancers at high

resolution, overcoming many limitations of tissue biopsies. However, exploiting ctDNA to

determine how a patient’s cancer is evolving in order to aid clinical decisions remains difficult.

This is because ctDNA is a mix of fragmented alleles, and the contribution of different cancer

deposits to ctDNA is largely unknown. Profiling ctDNA almost invariably requires prior

knowledge of what genomic alterations to track. Here, we leverage on a rapid autopsy

programme to demonstrate that unbiased genomic characterisation of several metastatic

sites and concomitant ctDNA profiling at whole-genome resolution reveals the extent to

which ctDNA is representative of widespread disease. We also present a methylation pro-

filing method that allows tracking evolutionary changes in ctDNA at single-molecule reso-

lution without prior knowledge. These results have critical implications for the use of liquid

biopsies to monitor cancer evolution in humans and guide treatment.
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Liquid biopsies, comprising profiling circulating tumour
DNA (ctDNA) from the plasma of cancer patients, have
changed the way in which we can study human malig-

nancies1. Taking plasma samples instead of tissue biopsies is
easier and less invasive, and several studies have demonstrated
the clinical value of tracking somatic mutations in ctDNA
(reviewed in ref. 1). However, technical limitations and lack of
quantitative, standardised measurements prevent ctDNA from
being used systematically, accurately and robustly2. Specifically,
we face the following problems:

(a) Plasma ctDNA is a mixture of alleles from distinct cancer
cells and, unlike tissue biopsies, cannot be separated into
single cells.

(b) Plasma ctDNA is often diluted by large quantities of cell-
free DNA from normal cells, making liquid biopsies very
impure.

(c) The extent to which ctDNA reflects different metastatic
lesions in distinct regions of the body remains largely
unknown.

These limitations imply that unbiased genomic profiling of
ctDNA remains difficult and costly. This is why to date, profiling
ctDNA invariably requires prior knowledge of recurrent and/or
patient-specific alterations in human cancers. Studying the evo-
lution of treatment resistance using ctDNA, for example, requires
prior knowledge of the mutations and pathways involved, for
example RAS/RAF pathway mutations for EGFR inhibitiors3–6,
or DNA repair back-mutations in prostate cancers treated with
PARP inhibitors7. Also tracking tumour progression in ctDNA
requires prior knowledge of what mutations were present in the
primary tumour8–10. Moreover, measuring the contribution of
different metastatic sites to ctDNA remains challenging because
comprehensive profiling of metastatic lesions is possible only
post-mortem.

In this study, we leveraged on a rapid autopsy programme
called LEGACY (CCR3995, REC 13/LO/1535) as well as a clinical
study on early breast cancer (REC 13/LO/1015) taking place at
the Royal Marsden NHS Trust in London to perform an unbiased
characterisation of ctDNA and concomitant comprehensive
profiling of many detectable lesions from metastatic breast cancer
patients. Using deep whole-genome sequencing, we revealed the
extent to which ctDNA represents the different lesions in a given
patient. We also developed a new methylation profiling approach
applied to ctDNA that allows tracking the evolution of sub-
populations of cancer cells in plasma at single-molecule resolu-
tion without prior knowledge of the mutational profiles of solid
metastases.

Results
Parsimonious reconstruction of the metastatic cascade in
breast cancer. LEGACY (CCR3995) was a pilot programme with
the aim of determining feasibility of patients donating tissues
soon after death from metastatic breast cancer. It included the
collection of a blood sample for both germline DNA analysis as
well as plasma DNA for ctDNA extraction. REC approval (IRB)
number was 13/LO/1535 (clinicaltrials.gov: NCT02126800). In
this study we present the analysis of the metastatic cascade and
ctDNA profile of LEGACY patients 1 and 2.

LEGACY patient 1: A 51-year-old previously healthy female
had a 2-month history of right upper quadrant abdominal pain,
weight loss and anorexia. Imaging investigations confirmed liver
metastases and a likely right breast primary carcinoma with
axillary and mediastinal nodal involvement, i.e. de novo Stage IV
breast cancer. Asymptomatic pulmonary emboli were found.
Right breast core biopsy revealed grade 2 invasive ductal

carcinoma (T3, P2, M1) ER 8/8, PR 6/8, HER2 negative. The
clinical history was as follows (see Supplementary Fig. 1A for
diagram):

● Month 1: First-line chemotherapy (epirubicin and cyclopho-
sphamide)

– partial response in liver, stable at other sites
– then progressive disease

● Months 3–8: Second-line chemotherapy (weekly paclitaxel)

– partial response especially in liver

● Months 9–14: Maintenance endocrine therapy (letrozole)

– progressive disease with new peritoneal nodules and
progression of liver metastases

● Months 15–16: Third-line chemotherapy (capecitabine),
stopped due to toxicity

– PET/CT stable disease (Month 17)

● Months 17–19: Maintenance endocrine therapy (exemestane)
● Month 19: Hypercalcaemic crisis
● Month 21: Died (hepatic failure primarily). Rapid donation

performed within 4 h of death

We performed whole-genome sequencing at median 53.5×
depth (45–145×) in 12 samples from the primary, ipsilateral
axillary lymph nodes, liver, lung, diaphragm and ovary metastases,
as well as matched normal blood DNA (61×, Fig. 1a). Copy
number profiling revealed a striking copy neutral (diploid)
genome-wide loss of heterozygosity (LOH), see Fig. 1b and
Supplementary Fig. 2. This event was present in every analysed
sample and was therefore truncal in the tumour. Copy neutral
LOH results from losing one of the alleles and then copying the
remaining allele (e.g. AB→AA). Interestingly, chromosome 20, X
and 16p retained heterozygosity, indicating they were unaffected
by the LOH event. Genome-wide copy neutral LOH events have
also been recently reported to be recurrent in undifferentiated
sarcomas11. Other copy number alterations reflected the typical
changes previously seen in breast cancer, such as chromosome 1q,
8, 10p and 16p gains12,13 (Supplementary Data 1). Somatic single-
nucleotide variant (SNV) analysis revealed a PIK3CA E542K
putative driver mutation that was clonal in all samples (Fig. 1c,
Supplementary Data 2). This variant was validated in all samples
using digital droplet PCR (Supplementary Data 3). We also
identified a mutation in ESR1 Y537N that was present only in the
liver metastasis and likely conferred resistance to hormonal
therapy. This is consistent with the clinical course of the patient,
who progressed while on letrozole (initially) and then subse-
quently on exemestane, specifically in the liver. Consequently, the
predominant site of progression and likely cause of death was liver
failure. Interestingly we also report a second ESR1 D538G
mutation at 32% cancer cell fraction (CCF) in Ovary Met R2,
indicating that strong selective pressures and consequent con-
vergent evolution for ESR1 mutants.

We then examined mutations and copy number profiles
together. Notably, somatic mutations that happened before the
truncal genome-wide LOH event are copied over to the other
allele and hence are also found as homozygous in the tumour,
whereas mutations that happened after are found in only one out
of two alleles. Interestingly, all mutations in one out of two alleles
(post-LOH) were either private to primary and regional (axillary)
lymph nodes, or private to the metastases. This indicates that
the copy neutral genome-wide LOH event was possibly what
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triggered the final malignant expansion. Strikingly, we also found
a few somatic mutations in two copies (before re-diploidisation)
that distinguished the two parallel lineages of primary and
regional lymph nodes, from all the distant metastases (Supple-
mentary Fig. 3). This complicated picture can be explained by a
single haploidisation event where a diploid cell lost the maternal
or paternal copy of most chromosomes. This probably led to high
genomic instability and therefore high cell death. Stability was
then restored in the haploid clone within a few cell divisions by
two independent re-diploidisation events, one that gave rise to all
the cells in the primary tumour and regional lymph nodes and
one that gave rise to all the distant metastases (Fig. 1d). This
suggests convergent evolution at the level of genome-wide copy
neutral LOH, and to our knowledge is documented for the first
time in this study.

Mutational signature analysis revealed that the predominant
mutational process in all sites was Signature 1A which is the

product of cytosine deamination at CpG sites due to ageing14. The
only other detectable signature in the patient was Signature 2
(APOBEC) in the breast, lymph nodes and a single ovary sample
(R2), indicating low levels of early APOBEC activity that may be
diluted by an increasing mutational burden (Supplementary Fig. 4).

Previous studies on metastatic disease in prostate cancer15 and
breast cancer16–18 reported extensive polyclonal seeding of
metastases, as well as re-seeding from metastasis to primary,
exposing a level of complexity in the metastatic cascade that, if
true, would make this a clinically intractable problem. A more
parsimonious analysis of the same data revealed that many of the
complex patterns were often due to spurious low frequency
variants or difficult to infer copy number states19. In our own
reanalysis of ref. 16, we show that resolved copy number analysis
and phylogenetic reconstruction identifies a much simpler
metastatic cascade, where although there were polyclonal samples
(samples containing more than one clone), seeding of metastatic
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Fig. 1 Genomic profiling analysis of LEGACY patient 1. a Multiple samples from distinct metastatic deposits in different organs and the primary tumour
were collected from this patient, together with blood germline reference (buffy coat) and plasma. b Copy number alterations analysis highlights genome-
wide copy neutral LOH and overall homogeneous copy number profiles. Median total copy number in 1 Mb bins with a minimum mappability score of 0.8.
c Single-nucleotide variant analysis identified a clonal PIK3CA driver mutation and convergent evolution for drug resistant ESR1 mutants. SNVs detected in
more than one sample were clustered with sciClone (colour bar reported to the right of heatmap, see sciClone Cluster legend). d Diagram of inferred
genome-wide copy neutral LOH event that can be explained by haploidisation followed by convergent re-diploidisation after a few cell divisions.
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deposits was largely monoclonal in origin (Supplementary Fig. 5,
Supplementary Materials and Methods). These results are
consistent with a more recent analysis of primary-metastatic
pairs in colorectal cancer20. In this regard, careful identification of
genetically distinct subpopulations of cancer cells is crucial, and
liberal subclonal classifications can instead produce over-
complicated patterns21 where the inferred evolutionary history
of the tumour is driven by measurement noise. Moreover, the
identification of the correct metastatic cascade is limited often by
single samples taken from each metastatic site, instead of multi-
region sampling from each metastatic deposit. To reconstruct the
metastatic cascade in the LEGACY cohort we focused on
mutations with a single copy number state in all sites (diploid),
exploiting the hitchhiking principle to reconstruct the phyloge-
netic tumour tree. We then employed two separate clustering
methods (sciClone and k-means), followed by manual curation to
identify the correct subclonal clusters of mutations (see Methods).

Parsimonious reconstruction of the metastatic cascade in this
patient revealed a relatively simple dissemination pattern where
a single lineage from the primary tumour seeded all distant
metastases very early during the evolution of the tumour
(Fig. 2a, Supplementary Fig. 6, Supplementary Data 4). Lymph
node dissemination also occurred early but independently.
Early dissemination has been documented before both in
breast22 and colon cancer20,23. Hence, dissemination to the
large majority of sites was consistent with monoclonal seeding
(see Supplementary Fig. 7). However, 2/12 samples, one in the
liver and one in the ovary were polyclonal in origin, suggesting
exchange of seeding between these two metastatic sites.
Specifically, a major subpopulation of cells in Liver Met R3
appears to have seeded a minor population of cells in Ovary
Met R2 that is a closely related ancestor to the cell that seeded
the entire Ovary Met R3 and the diaphragmatic metastasis
(Fig. 2b, clones of interest highlighted, other clones in grey).
Similarly, we identified a subpopulation of cells that form the
majority of cells in Ovary Met R2 and that are closely related to
the minor population in Liver Met R3, indicating that the minor
clone in this sample was seeded by the major clone in Ovary
Met R2. This lineage appears to have developed an ESR1
mutation and the clone is the only detectable population in the
remaining liver samples, which were all monoclonally seeded
(Liver Met R1, R2, and R4). The polyclonality of Liver Met R3
and Ovary Met R2 was supported by the presence of a 17p loss
and 17q gain unique to the major clone of Liver Met R3
(Fig. 1b) and were detected in the minor clone of Ovary Met R2
in 20-24% of cancer cells. Additionally, the major clone of
Ovary Met R2 contained an additional gain in 16p in 71% of
cancer cells that was clonal in the monoclonal liver samples (see
Supplementary Data 1). These CNAs represent independent
support for the presence of these clones. We note that
identification of sample polyclonality was not dependent on
purity of the sample (see Supplementary Data 5).

These results indicate that the metastatic cascade in breast
cancer is, although complex, a tractable evolutionary phenomenon
that is driven mostly by monoclonal seeding, with rare polyclonal
seeding events (see fully reconstructed metastatic cascade in
Fig. 2c). In this individual there were two sites that showed
evidence of being capable of harbouring genetically diverse
subpopulations (Ovary Met R2 and Liver Met R3) and interest-
ingly appear to have exchanged metastatic cells that have
expanded and caused further spread. Focal ‘niches’ of polyclon-
ality in specific metastatic locations have been documented
previously in ovarian cancer24. Copy number profiles of the
metastatic sites were largely homogeneous indicating that
subclonal copy number alterations did not drive metastasis.

However, metastasis must have occurred almost immediately after
the genome-wide loss-of-heterozygosity event (haploidisation and
duplication) as we found no post-duplication mutations that were
clonal across all samples. This suggests the haploidisation-
duplication event may have been crucial to creating a metasta-
tically competent lineage and may explain apparent homogeneity
in copy number profiles of further metastatic sites.

To identify neoantigens present in each of the metastatic
regions and the primary tumour we classified the HLA type for
each region and then estimated the putative number of
neoantigens (see Methods). We first observed that the HLA
locus of patient 1 was identified as homozygous for most of the
regions, confirming our previous observation of a haploidization
event across the genome (Supplementary Fig. 2). Cases that were
not homozygous for HLA were due to normal contamination in
the sample. We identified only two neoantigens and those were
present in all lesions, suggesting they were not able to elicit an
immune response in the metastatic sites (Supplementary Data 6).
We speculate that the general loss of heterozygosity in the
primary tumour reduced the putative number of neoantigens and
thus increased the chances of metastatic seeding. This loss of
heterozygosity has been recently proposed as an immune evasion
mechanism in ovarian25, lung26, and breast cancer27.

LEGACY patient 2: A 35-year-old woman presented with a
4 cm left breast mass during the third trimester of her first
pregnancy. She underwent left mastectomy and axillary lympha-
denectomy for a 29 mm grade 3 and 23 mm grade 2 multifocal
grade 2 ER positive, HER2 negative carcinoma with 10 of 14
nodes involved. Post-partum staging revealed de novo Stage IV
with extensive bone and low volume lung metastases. The clinical
history was (see Supplementary Fig. 1B for diagram):

● Months 3–7: First-line chemotherapy (capecitabine) plus
denosumab

– partial response on PET/CT; no new sites of disease

● Months 7–10: Maintenance endocrine therapy (goserelin plus
tamoxifen)

– rising tumour marker CA15.3. New liver disease on PET/
CT

● Months 11–14: Second-line chemotherapy (epirubicin plus
cyclophosphamide, 5 cycles)

– mixed response at various sites but no new sites of disease
on PET/CT after three cycles. Tumour markers
fluctuating

● Month 14: Post-mastectomy chest wall radiotherapy

– subtle progression in the liver on CT but stable disease at
other soft tissue sites and bone disease on PET/CT.
Tumour markers remain fluctuant

● Months 16–30: Third-line chemotherapy (paclitaxel)

– tumour marker and PET/CT response until Month 30

● Months 35–43: Fourth-line targeted therapy with PARP
inhibitor olaparib plus AKT inhibitor (phase I study)

– partial response but progression by Month 41

● Month 47: Fifth-line chemotherapy (eribulin, 3 cycles)
● Months 48–49: Sixth-line chemotherapy (gemcitabine plus

carboplatin, 2 cycles)
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● Months 50–53: Seventh-line therapy with CDK4/6 inhibitor
palbocliclib and exemestane (previously intolerant to fulves-
trant)

● Month 53: Died (fulminant hepatic failure)

Whole-genome at median 95× depth (73–119×) was performed
in nine samples from the para-aortic lymph nodes, lung and liver,
in addition to normal DNA (blood) as previously (39×, Fig. 3a).
Copy number alterations were largely homogeneous across
metastatic sites and include common breast cancer copy number

alterations such as chromosome 1q gain and 16q loss (Supple-
mentary Data 1). A chromosome 8 gain was unique to Liver Met
R3 (Fig. 3b). Mutational analysis reveals a clonal PIK3CA G1049R
and a clonal ERBB2 E770_A771insAYVM mutation (Fig. 3c,
Supplementary Data 2). Chromosome 13 loss was identified in all
samples. The heterozygous loss contains BRCA2 and RB1, the
latter linked to resistance to CDK4/6 inhibitors28. Interestingly,
the two samples with the highest number of private mutations
were Liver Met R2 and R3, both of which had distinct truncating
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Fig. 2 Clonal evolution analysis of LEGACY patient 1. a Subclonal decomposition allows construction of the tumour clone tree from the sample tree, thus
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indeed exchanged clones between each other. The same clones went on to seed distinct metastatic deposits in a monoclonal fashion. For example, the pink
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c Reconstructed metastatic cascade in breast cancer LEGACY patient 1 shows that the primary tumour (green) spread early to the lung (grey) and
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mutations in DNA repair genes (ERCC3 andMSH2, respectively).
Signatures 1A (age) and 13 (AID/APOBEC) were detected in all
samples. Signature 2 (AID/APOBEC) was detected in all samples
except for Lung Met R2 (Fig. 3d).

Phylogenetic reconstruction revealed that the para-aortic
lymph node samples appear to have seeded from the lung
metastases which may reflect the lymph drainage pattern from
the lung. Liver Met R3 diverged early from the other metastatic
samples and Liver Met R2 contained the highest burden of private
mutations perhaps due to increased APOBEC expression and
ERCC3 mutation. In this patient, according to the samples
examined, each metastatic sample appeared monoclonal (Fig. 3e,
Supplementary Fig. 8).

ctDNA reflects the dynamics of metastasis and treatment
resistance. We performed whole-genome sequencing at 40×
depth of the ctDNA in both patients. ctDNA from LEGACY
patient 1 was particularly pure (79%) whereas patient 2 had a
lower purity (33%). We performed somatic SNV genotyping
using the mutations found in the tissue samples (therefore

including all mutations reported in Figs. 1c and 3c). We used
these variants and multiple linear regression to determine the
contribution of each tissue sample to ctDNA. We found that the
plasma sample of Patient 1 predominantly reflected metastatic
liver disease, especially the treatment-resistant ESR1 mutant
clone, consistent with clinical course (Fig. 4a). This is further
evidence that the ESR1 mutant clone was driving resistance by
outcompeting the rest of the cancer cell population through
proliferative advantage under hormone therapy. With more cell
division and turnover, increased shedding of tumour DNA from
the resistant clone into the bloodstream occurred. The proposed
increase in cell proliferation of the resistant clone and its clinical
progression as seen on PET/CT is consistent with liver failure as
the primary cause of death. In total, the sum of contribution
coefficients of the liver samples in Patient 1 was 0.86 and this was
corroborated with the ESR1 mutation being present in an esti-
mated 98% of cancer cells that shed DNA in the plasma.
LEGACY patient 2 ctDNA reflected predominantly active meta-
static sites in the lung and para-aortic lymph nodes (Fig. 4b).
These patterns are also evident from the heatmap of SNVs when
ctDNA was included (Supplementary Fig. 9).
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Tracking clonal dynamics in ctDNA at single-molecule reso-
lution using methylation clocks. Due to the technical limitations
of ctDNA samples, even high-depth whole-genome sequencing
(60–100×) cannot capture the subclonal composition of cancer
cell populations at high resolution, and only relatively large clones
can be detected. Going deeper would require whole-genome

profiling at >1000×, which is uneconomic even for research
purposes. This is problematic because most studies that use prior
knowledge to profile liquid biopsies report the identification of
clinically relevant subclonal mutations in the plasma at very low
frequency, often at variant allele frequency (VAF) < 10%1.
Moreover, resolving the subclonal architecture of a single bulk
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sample such as plasma DNA remains challenging as it requires
several correction steps and adjustments for copy number
alterations and cellularity29. This is an unavoidable problem as
ctDNA cannot be separated into smaller biopsies or single cells as
solid tissue samples can. Spatial information of the distinct sub-
clonal populations is therefore lost in the ctDNA, as the genome
of cancer cells is broken into small pieces about a nucleosome
interval long (~80–120 bp) and mixed together. The mutations
that characterise a particular subclone invariably appear in dif-
ferent fragments from different genomic regions, and patching
together these fragments from the same clone to reconstruct
single haplotypes is de facto impossible.

To overcome this limitation, we developed a novel single-
molecule methylation profiling assay applicable to ctDNA. Single
CpG methylation changes (epimutations) are due to methyltrans-
ferase errors at cell division and occur 1000 to 10,000 times more
frequently than DNA point mutations30. This implies that
multiple somatic epimutations can occur close together in a so-
called CpG island, to the extent that more than one CpG change
can be found in the same piece of fragmented ctDNA, an event
that almost never happens for point mutations and that allows
clone haplotyping. Profiling somatic epimutations that are in the
same DNA fragment can be done with standard Illumina
sequencing (e.g. 150 bp pair-ended), thus permitting haplotype
reconstruction using CpG methylation changes from standard
bisulfite sequencing. Each haplotype from a specific CpG island in
the genome is a ‘barcode’ sequence of zeros (non-methylated) and
ones (methylated) that corresponds to an identifiable cancer
cell lineage in the plasma. Several studies by us and others
demonstrated that, by leveraging on epigenetic drift31,32, passenger
methylation haplotypes can be used to track the ancestry of
normal somatic cells, as well as to profile the genealogy of cancer
cells from solid malignancies such as colorectal cancer23,26,27. The
idea is to use methylation as a ‘molecular clock’ to trace ancestry
of somatic cell populations over time at single-molecule resolu-
tion. This concept, applied to solid tissues, has been around for a
long time and has been pioneered by Shibata, Tavaré and
colleagues, who used first microsatellite repeats33 and then
methylation patterns31,32,34–36 as clocks in both normal and
cancer tissues. The use of somatic mutations as molecular clocks
has also been reported more recently with next-generation
sequencing using mutational signatures14. Importantly, however,
the resolution of methylation clocks is several orders of magnitude
higher than point mutation clocks, such as mutational signature 1
(ageing), as the mutation rate is orders of magnitude higher36. In
this study we extend methylation clocks to work on ctDNA in the
plasma of cancer patients.

We previously identified two CpG island locations in the
genome (ZNF454 and IRX2) that are amenable to be used as
methylation clocks in cancer30 (see Material and methods).
Methylation data in healthy tissues from autopsy samples of

individuals with different ages for these loci have been analysed
previously30. Specifically, methylation in two CpG islands in the
IRX2 and ZNF454 loci increases linearly with age in dividing
tissues, but remains stably low in non-dividing tissues. In this
study we extended the assay and designed a new protocol that
allows us to profile a shorter version of these clock regions in
order to fit them within an average size plasma DNA fragment of
~80–120 bp in length (see Methods). We performed high-depth
targeted bisulfite sequencing of these two methylation clocks
(median 16,000× for ZNF454 and 22,000× for IRX2) in a total of
13 tissue samples and the ctDNA of LEGACY patient 1. We
identified a large plethora of methylation haplotypes that did not
show signs of hypermethylation (see Methods, Supplementary
Fig. 10, Supplementary Data 7) and could be therefore used to
trace ancestry. Moreover, thanks to the possibility of haplotyping
epimutations, the contamination from non-cancer cells (e.g.
peripheral blood lymphocytes) in cell-free DNA of cancer
patients can be filtered out as blood cells have low methylation
levels across the whole CpG island of clocks30, and hence
unmethylated haplotypes were excluded from our analysis.

Methylation levels from the tissue were conserved in the
ctDNA, indicating that methylation clocks are a stable marker of
cell fate. We applied the same regression method that we used to
calculate the contribution of different sites to ctDNA from whole-
genome sequencing data. We found that the epimutations largely
recapitulated what we reported using nucleotide mutations from
whole-genome sequencing, confirming that metastatic disease in
the liver dominated plasma DNA (Fig. 4c, d). This demonstrates
the power of methylation clocks in tracing ancestral cell
populations applied for the first time to ctDNA. It is also
important to note that these high-resolution single-molecule data
cost over 1000 less to generate than the respective whole-genome
sequencing, and moreover allow us to detect clonal populations
identified by methylation haplotype families with prevalence as
low or even lower than 1%. Unfortunately, methylation clock data
from LEGACY patient 2 could not be used as they showed signs
of hypermethylation in all sites (see Supplementary Fig. 11).

To further compare methylation clocks with whole-genome
data, we also reconstructed a sample tree of the solid biopsies
using methylation haplotypes (to be conservative in our
phylogenetic analysis we excluded haplotypes with prevalence
<1%). We confirmed that the ancestry recovered with epimuta-
tions in ZNF454 was highly concordant with the one recovered
with nucleotide mutations from whole-genome sequencing
(Fig. 4e). This is because epimutations naturally encode the
genealogy of divergent lineages (cartoon in Fig. 4f). A very similar
tree structure can be recovered using IRX2, demonstrating the
robustness of methylation clock profiling in terms of phylogenetic
reconstruction (Fig. 4g). Hence, three completely independent
genomic profiling assays all inferred similar genealogic structures
of the metastatic cascade.

Fig. 4 Tracking the metastatic cascade in the plasma of LEGACY patients. Contribution of different tumour samples to ctDNA in LEGACY patient 1 (a)
and patient 2 (b) using multiple linear regression analysis of somatic mutations. Similarly, contribution of tumour sites to ctDNA can be measured using
methylation clock analysis (epimutations instead of nucleotide substitutions), as presented here for LEGACY patient 1 using two clock-like methylation
regions that have been previously validated as subject to methylation drift, namely ZNF454 (c) and IRX2 (d). eWith the same data we can also reconstruct
the tumour phylogenetic tree using methylation clock haplotypes for ZNF454, corroborating the overall phylogenetic structure revealed by whole-genome
sequencing. f This is because epimutations contain phylogenetic information about diverging cell lineages. g The same can be done for IRX2, leading to the
construction of a consistent tree. Notably, methylation clock analysis can detect clones down to 1% prevalence and is >1000 less costly than whole-
genome sequencing. h–k The same methylation clock analysis has been applied to an independent cohort of early breast cancer patients with matched
primary, lymph node and ctDNA. High correlation (Pearson) between frequency of methylation haplotypes in the primary tumour of patient 6 was found
for both clocks ZNF454 (p= 4.94 × 10−63) (h) and IRX2 (p= 3.11 × 10−13) (i). Also Patient 16 demonstrated high correlation between methylation patterns
in ctDNA and a specific lymph nodal lesion, again for both ZNF454 (p= 7.86 × 10−60) (j) and IRX2 (p= 7.51 × 10−59) (k). P values refer to tests of no
correlation.
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To validate these findings, we profiled epimutations in the
same methylation clocks of tissues and ctDNA from an
orthogonal cohort of breast cancer patients with lymph node
spread but no sign of distant metastases which we previously
characterised with whole-exome and targeted sequencing22. Of
those patients we profiled multiple samples from the primary and
multiple lymph nodes. As those patients did not show sign of
distant metastatic deposits, only a few samples per patient were
available and hence linear regression as performed for LEGACY
patient 1 would not be informative. Instead, we compared the
frequency of methylation haplotypes in different solid tissue
samples vs ctDNA to verify their concordance (e.g. proportion of
reads with haplotype 001010011 in the solid tissue sample vs
ctDNA). We calculated the correlation of methylation haplotype
frequencies (VAF of a given binary string methylation haplotype)
in each pair of tissue sample vs matched ctDNA and found very
high correlations, with the two clocks again being concordant
(Fig. 4h, i for Patient 6 and 4j, k for Patient 16, see Supplementary
Fig. 12 for all correlations). This shows that the frequency of a
methylation clone (haplotype) in the tumour tissue could be
inferred from ctDNA with the presented methylation assay. This
again confirms the power of methylation clock profiling for
tracking clonal evolution in the plasma of cancer patients.

Discussion
Understanding the time-course dynamics of the metastatic cas-
cade is critical to cancer progression. Recent studies have high-
lighted overwhelming complexity of this cascade, posing a serious
problem of how to translate those findings in the clinic. However,
we argue that a considerable part of these findings is driven by the
use of lower-resolution data, noise, and by inevitable limitations
of current bioinformatics methods, which do not account for all
the confounding factors of tumour evolution in space and time.

We show that metastatic progression is instead often a tract-
able problem with the right data and models. Unravelling the
metastatic cascade can be interesting biologically, but how can we
exploit this knowledge prospectively in the clinic?

We report the genetic evolution of two HR+/HER2− breast
cancer patients who presented with de novo metastatic disease. In
the first one, a clonal PIK3CA driver mutation and convergent
evolution for drug-resistant ESR1 mutants evolved under the
selective therapeutic pressure of endocrine therapy. Interestingly,
we were also able to profile multiple samples from the primary
tumour of this patient, taken at the same time as the other
metastatic samples. This is rare in the context of autopsies as
normally the primary is resected earlier and, even when available,
cannot be compared within the same time point with the rest of
the metastatic cascade. In this case the primary was not resected
as deemed not clinically active, providing an opportunity for
concomitant sampling of primary and metastatic deposits.
Reconstruction of the metastatic cascade revealed that early
monoclonal seeding was the dominant pattern of metastatic
spread, as previously reported in colorectal cancer20,23, with
evidence of polyclonal seeding restricted to one liver and one
ovary sample. In the second patient, treated with standard sys-
temic agents as well as targeted therapy, monoclonal seeding was
also dominant, with a pattern of early metastatic seeding to lung
and liver and a single (monophyletic) metastatic clone invading
the para-aortic lymph nodes. Of particular interest were subclonal
mutations in DNA repair genes and concomitant increase in the
number of mutations in the respective tree branches. We
acknowledge that the limited incidence of polyclonality in the
samples examined may not imply that this phenomenon is
unimportant clinically, as this did contribute to the spreading of
subpopulations in clinically active metastatic sites. Assessing

polyclonality vs monoclonality of metastatic seeding is crucial for
a correct understanding of the metastatic cascade, especially when
accumulating evidence from patient samples and the model sys-
tem paints a complex and often discordant picture of a mixture of
both monoclonal and polyclonal seeding20,37,38.

Utilising ctDNA to track metastatic progression holds
immense promise, but genomic profiling assays that focus on
clonal evolution are missing. Here we propose a novel methyla-
tion assay that enables the tracking of the genealogy of cancer cell
populations in the plasma of cancer patients at single-molecule
resolution without prior knowledge using epimutations instead of
nucleotide substitutions. Strikingly, the inference performed with
whole-genome sequencing from the plasma to identify metastatic
deposits contributing to plasma DNA was highly concordant with
the one performed with methylation clocks. This methodology
allows tracking cancer clones in the plasma at unprecedented
resolution and 100–1000 times cheaper than standard genomic
profiling with whole-exome or whole-genome sequencing.
Additional studies will be needed to further develop this techni-
que and extend this work to other tissue types and additional
molecular clock loci. However, we envisage this technology could
be used for longitudinal tracking of cancers under therapy.

Methods
Post-mortem sample collection. All samples were retrieved from patients within
4 h of death. Large (6–8 mm) punch biopsies of solid organ metastases or whole
lymph nodes were rapidly sampled, split and snap frozen in liquid nitrogen and
stored at −80 °C prior to nucleic acid extraction and sequencing; adjacent samples
from the same sites were preserved in 10% phosphate-buffered formaldehyde and
processed for paraffin embedding and routine haematoxylin and eosin staining and
immunohistochemistry. In preparation for nucleic acid extraction frozen section
analysis of slices flanking the samples were also stained to assess the proportion of
tumour for the entire extract.

Sample preparation and sequencing. Ten 20 μm cryo-sections from each sample
were used for DNA extraction using the DNeasy kit (Qiagen) following the
manufacturer’s instructions. DNA samples were quantified using the Qubit dsDNA
HS assay (Invitrogen) and 500 ng were sent to GATC Biotech Ltd (Germany) for
library preparation and whole-genome sequencing. Libraries were sequenced on a
HiSeq2500 (Illumina) to a median coverage of 60×.

Methylation molecular clocks. Two different loci on chromosome 5 were used as
methylation molecular clocks: IRX2 (a 201 bp locus containing 9 CpGs) and
ZNF454 (a 200bp locus bearing 16 CpGs). These loci were shown to behave as
clocks in a previous publication30, as shown by linear correlation with age in
dividing tissues in Supplementary Figs. S2 and S5 of ref. 30, respectively. We also
profiled a shorter version of ZNF454, containing 14 CpGs but which is amenable to
ctDNA analysis where DNA fragments are particularly small. For each of the above
samples, 50 ng of genomic DNA was bisulfite-converted using the EZ Methylation
Direct kit (Zymo) following the manufacturer’s recommendations. The resulting
ssDNA was quantified with the Qubit ssDNA assay (Invitrogen). The molecular
clocks were PCR amplified using the following primers: IRX2-fwd: GTATATTT
TGTTAGGATTGGAGT, IRX2-rev: CATAAAACCCACATCTCTTTCAA,
ZNF454-fwd: GGGAGGTTAGTTTAGGGGAG, ZNF454-rev: TTCTATTAC
CTTCCAAACCTTTT. Between 1 and 5 ng of ssDNA was used to amplify each
molecular clock in 25 μl PCR reactions made up from 12.5 μl of Kapa2G Robust
ready mix (Kapa), 2 μl of the forward and reverse primer mix (10 μM), 1 μl of
MgCl2 (50 mM), 1.5 μl of DNA and 8 μl of DNase/RNase free water. The thermal
profile of the PCR reaction was as follows: 95 °C/2 min, [95 °C/10 s, 58 °C/10 s,
72 °C/35 s] × 30, 72 °C/2 min. PCR products were purified with the QIAquick kit
(Qiagen) and quantified with the Qubit dsDNA HS assay (Invitrogen). For each
sample, equal amounts from both molecular clock products were pooled and
Illumina-compatible libraries were prepared using the NEBnext Ultra II kit (NEB)
as follows: 25 μl (approximately 10–30 ng) from each pool was mixed with 1.5 μl of
the NEBnext Ultra II End Prep Enzyme Mix and 3.5 μl of the NEBnext Ultra II End
Prep Reaction buffer. After 30 min incubation at 20 °C followed by 30 min incu-
bation at 65 °C, 1.25 μl of the NEBnext Adaptor (diluted five-fold) was added to the
reactions. The NEBnext Ultra II Ligation Master Mix (15 μl) and NEBnext Ligation
Enhancer (1 μl) were added to the previous reaction mixtures and incubated at
20 °C for 15 min. Further, 1.5 μl of USER enzyme was added to the ligation mix-
tures and then incubated at 37 °C for 15 min. The reactions were then purified with
1.4× SPRI-beads prior to PCR amplification. PCR reactions were prepared with
10.5 μl of ligated DNA fragments, 12.5 μl of NEBnext Ultra II Q5 Master Mix, 1 μl
of i7-NEBnext Dual-Index Primer and 1 μl of i5-NEBnext Dual-Index Primer. The
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PCR cycling conditions were as follows: 98 °C/30 s, [98 °C/10 s, 65 °C/75 s] × 6,
65 °C/5 min. Libraries were purified with 1.2× SPRI-beads and quality control was
done on DNA-HS Bioanalyser Chips (Agilent). Finally, equimolar amounts of each
library were mixed and the resulting pool was sequenced using MiSeq 300-cycle.v2
reagents (Illumina).

Bioinformatics analysis: whole-genome sequencing. FASTQ files were trimmed
for adaptor content using skewer39 with a minimum length allowed after trimming
of 35 bp, only on reads with a minimum mean quality of 10 and with the filter
to remove highly degenerative reads (-l 35 -Q 10 -n). Trimmed reads were
aligned to hg38 (GRCh38) using bwa mem40. Sam files were sorted, compressed
to bam files and duplicates were marked using Picard tools (http://broadinstitute.
github.io/picard/). Bam files were indexed using samtools41.

Mutations in each sample were called firstly using Mutect2 (ref. 42). Variants
were only kept if the coverage in both the tumour and normal was greater than 10
reads and the variant was present in three or more reads in the tumour. The variant
must have the genotype ‘0/0’ in the normal but not in the tumour. Mutations with
the flag ‘artifact_in_normal’ were kept but variants called in each tumour sample
were removed if their VAF was less than ten times greater than in the normal blood
sample.

Per sample results for each patient were then merged and used as input for
Platypus43 that was run in genotyping mode. The following filtering criteria were
used to filter variants after platypus genotyping: (i) only variants with Platypus
filter PASS, alleleBias, Q20, QD, SC and HapScore were kept; (ii) minimum
coverage and genotype quality of 10 was required for all samples; (iii) minimum of
3 reads covering the variant in at least one of the tumour samples per patient was
required; (iv) the highest VAF in the tumour samples must be 10 times greater than
the VAF in the normal; and (v) the germline sample must have a genotype of ‘0/0’
and at least one tumour sample must not have a genotype of ‘0/0'. Variants were
annotated using VEP44.

Sequenza was used to identify heterozygous germline single-nucleotide
polymorphisms (SNPs) in the bam files (0.4–0.6 allele frequency in the matched
normal sample) and normalise depth ratios for GC content45. Loci were filtered for
a minimum of 25 reads in the matched normal sample. Log2 ratios (LRR) were
derived from the depth ratios by calculating the log (base 2) of the depth ratio and
subtracting by the global median. LRR outliers were smoothed using CGHcall46.
The mirrored allele frequencies of the heterozygous loci for each chromosome arm
were segmented using piece-wise constant fitting (PCF)47. If B-allele frequency
(BAF) values in segments are considered not to be drawn from a normal
distribution expected in allele balance (BAF= 0.5, Kolmogorov–Smirnov test, p <
0.05), a two-component Gaussian mixture model was fitted to the BAF values of
the segment utilising mixtools version 1.0.4 (ref. 48), in order to estimate BAFs
representative of the major allele. The fixed standard deviation used for the
Kolmogorov–Smirnov test is estimated from an initial pass of two-component
Gaussian mixture modelling on all segments and also is used to restrict a grid
search of parameters for modelling allelic imbalance (code available as an R
package at www.github.com/georgecresswell/MiMMAl). Major allele BAF and the
LRR of the genome segments were used as input for ASCAT49 to estimate tumour
purity and ploidy. The purity and ploidy of the ASCAT solution was used to assess
the clonality of each segment using the Battenberg methodology50. If a segment
was considered subclonal, the copy number state with the highest prevalence
was taken.

For each variant the local total copy number state, VAF and sample purity was
used to estimate CCF51. Purity estimated from copy number analysis was used. The
number of alleles mutated was assumed to be 1 to avoid overcalling subclonality.

Mutational signature analysis. SNVs with a CCF of 0.2 or greater were used to
calculate mutational signatures using deconstructSigs52 using the signatures from
Alexandrov et al.53 as a reference and a minimum signature contribution of 0.05.
On average, the number of mutations used for signature analysis in Patient 1 was
2429 (range 2073–3023) and in Patient 2 was 8884 (range 4484–17268).

Phylogenetic analysis. Binarised mutations were then used to create sample trees
(CCF ≥ 0.2). Sample trees were constructed using maximum parsimony using
phangorn54 and the parsimony ratchet method. The tree is then rooted and edge
length is determined by the ACCTRAN criterion.

Subclonal reconstruction. To ensure mutations were reliable prior to inferring
potential subclones we filtered them for clonal diploid regions (homozygous
diploid in Patient 1). In total, approximately 65% of the genome of Patient 1 and
59% of the genome of Patient 2 were clonally diploid (when considering 1 Mb bins
with mappability greater than 0.8, see Figs. 1b and 3b). We used only diploid
genomic regions for subclonal analysis, leveraging on the hitchhiking principle
applied to cancer genomes (since cancers are made of somatic, asexually dividing
cells). Additionally, for each mutation we calculated the average mappability of the
region ±25 bp of each mutation from a bigWig generated for hg38 using the gem-
mappability tool in the GEM library55 and bigWigAverageOverBed56. We
required that the average mappability value in these bins to be 1 (uniquely map-
pable). We also removed mutations that overlapped with simple repeats and

low complexity regions in accordance with annotations from RepeatMasker
(http://www.repeatmasker.org).

These strictly filtered mutations were used as input for sciClone57. Only
mutations with a CCF ≥ 0.2 in two or more samples were used as we were primarily
interested in mutations subclonal in one sample and clonal/subclonal in another as
these would be informative of the metastatic cascade, as opposed to private
subclones. sciClone was run with a maximum number of clusters determined as
twice the number of tumour samples, minus one. This is the number of edges in a
tree of double the number of samples taken without private edges (i.e. sciClone will
be able to detect all shared clusters that would be present in a clone tree with twice
as many clones as tumour samples).

After manual inspection k-means clustering was also performed on Patient
1 (k= 12) and revealed that sciClone cluster 9 could be split into two clusters as a
subset of the mutations had a high CCF in Liver Met R3 (k-means cluster 8) and
the remainder of the cluster 9 mutations were largely absent in this sample. Using
both independent clustering analyses we determined that Ovary Met R2 and Liver
Met R3 were polyclonal. Mutations unique to the major clone in Liver Met R3 were
defined as belonging to k-means cluster 8, and mutations unique to the minor
clone in the sample were defined as k-means cluster 7 (containing all mutations in
sciClone clusters 6 and 8). Mutations in the major clone in Ovary Met R2 were
defined by sciClone cluster 6 (as k-means clustering did not re-identify this cluster)
and the minor clone mutations were defined as belonging to k-means clusters 8 and
9 (containing all mutations in sciClone clusters 7 and 9, bar a single mutation in
sciClone cluster 9). These definitions were used to separate the mutations in these
polyclonal samples. Private mutations were also assigned in Ovary Met R2 and
Liver Met R3 according to the distance of their CCF to the mean CCF of the clones
in these samples, or were determined to be in both clones if their distance was
closer to CCF= 1 than the mean of the major clone. These samples ‘split’ into
major and minor subclones were used to generate a phylogenetic tree using the
same method as described above.

Neoantigen calling. Polysolver V1.0 was run on each of the BAM files coming
from the different sites of Patient 1 to predict the HLA type. Then, Pvactools v1.4.4
was run using the previously classified HLA types to identify the putative neoan-
tigens present in each region. Both tools were run using default parameters.

Methylation clocks analysis. FASTQ files from the methylation clock assays were
trimmed as described above. Paired reads were then aligned to hg19 using Bis-
mark58. Bismark methylation extractor was then used to extract methylation states
of possible CpG sites from the original top and bottom strands. For each molecular
clock loci called CpGs are identified. CpGs are used for analysis if they have a total
number of calls for a position (methylated plus unmethylated) greater than or
equal to 1000. Reads with a call missing for a genomic position that passes this
coverage filter are removed to leave only complete reads with a CpG call on all
locations.

In each tumour sample reads are required to have at least one methylated CpG
site and reads can only have a maximum of 80% methylation to remove reads that
are likely produced by cells that have a low turnover (normal cells) and clocks that
have reached saturation and are therefore non-informative, respectively. Next, for
phylogenetic analysis specifically, remaining haplotypes (reads) with an overall
abundance of 1% or less are removed due to their rarity. For each tumour sample
100 random haplotypes are selected with replacement and an additional set of 100
‘synthetic’ unmethylated haplotypes are created as a reference for each case. A
similarity measurement is then performed pairwise between tumour samples and
the unmethylated reference as used previously30. In brief, the Hamming distance of
each haplotype combination between the two samples is measured and the shortest
distance of all these combinations is recorded and the haplotype pair is removed
from consideration. This is performed iteratively until all haplotype pairs have been
removed and the Hamming distances of the chosen pairs are summed. This
similarity measurement between all tumour samples and the unmethylated
reference is used to create a Neighbour Joining tree using phangorn54.

Haplotype frequency comparisons were performed following filtering for hypo-
and hypermethylation and tests of no correlation were performed using cor.
test in R.

Contribution of sites to ctDNA. ctDNA WGS bam files were processed identically
to the tissue samples to generate bam files and copy number profiles. Mutations
called in the tissues samples were then searched for in the ctDNA bam file using
platypus in genotyping mode. Copy number analysis was used to determine local
copy number and purity for calculating CCF as described above and CCFs
were used to perform a linear regression to determine organ contributions to the
ctDNA. Unfortunately in Patient 2 the callSubclones function in Battenberg failed;
therefore, the purity was estimated from the ASCAT fit generated by the fit.copy.
number function and we subset only clonal diploid regions in the tissue samples to
assess organ contributions. Frequencies of haplotypes were calculated after filtering
for a minimum of a one methylated site and less than 80% methylation and used
for linear regression.

Model selection for the linear regression was performed by carrying out a non-
negative least-squares estimation using the nnls R package. We begin by carrying a
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forward stepwise regression introducing a parameter in the model that maximises
adjusted R2. We then recursively remove non-significant (p > 0.05) variables by
removing the least significant variable.

Reanalysis of Hoadley et al. (2016). In their 2016 paper Hoadley et al.16 explored
the dynamics of metastatic dissemination in two patients with triple-negative
metastatic breast cancer recruited as part of a rapid autopsy scheme. From the first
of these patients, five tumour samples (primary, spinal, adrenal gland, liver and
lung) were obtained and from the second six tumour samples (primary, rib, kidney,
brain, liver and lung) were obtained. A subclonal deconvolution was performed for
both patients and clone trees constructed using the tool ClonEvol59. We re-
analysed the mutations identified in the original paper using sciClone57 and with
more careful and stricter criteria.

The pairwise VAF distributions among the samples from each patient are
shown in Supplementary Fig. 5A and B, respectively. Here the mutations are
coloured according to the cluster assigned to them by sciClone. Both the
mutational frequencies and the clusterings are as reported by Hoadley et. al. In
Supplementary Fig. 5A, by projecting the clusters onto the sample tree, we see that
the clustering is entirely compatible with the sample tree phylogeny, although the
mutations private to the liver sample are split into two separate clusters. Such a
split can occur where a subclone is under selection and expanding within the
population. However, where mutations exist in regions of copy gain, they can
appear to be present at a higher frequency that expect under neutral growth. Under
such circumstances, subclonal deconvolution algorithms can split clusters,
potentially indicating an expanding subclone where none exists. Again, we must
critically evaluate the evidence provided by a subclonal deconvolution to determine
if the clone is spurious or not. Here, we examined the depth ratios (not shown)
used to determine the copy number at the sites of the mutations in cluster 9. We
found no evidence to suggest that the copy number differs from that for the
mutations in other clusters and conclude the existence of an expanding subclone.

In their analysis Hoadley et. al. report ‘extensive multiclonal' seeding in this
patient; however, we find that often unidirectional monoclonal seeding perfectly
explains the pattern of dissemination and the subclones identified by sciClone
project perfectly onto the sample phylogeny. The original claims may stem from
the fact that the founder cell(s) of the metastases will contain mutations that have
been assigned to separate clusters by the subclonal deconvolution. Such a definition
of polyclonal seeding is much too broad, as it would render at least one sample as
polyclonally seeded in any study with more than three samples. Instead, we
maintain that a metastasis can only be defined as polyclonally seeded when it is
founded by cells harbouring mutations from clusters that are not hierarchically
related.

In Supplementary Fig. 5B we see that the subclone projection fails as two
clusters, 2 and 4, appear unparsimoniously in both the primary and the
(apparently) distantly related adrenal and liver metastases. We began our
reconciliation of the subclonal deconvolution and the sample tree by noting that
cluster 2 appears clonally at higher frequency than cluster 4 in the liver and adrenal
metastases. By observation of the sequencing depth ratio at the sites of these
mutations, we found evidence that they exist in a region of copy gain that was
missed when copy number was determined for these samples. For this reason, we
propose that clusters 2 and 4 should be merged.

Closer observation of the primary sample reveals the existence of two subclones,
one harbouring mutations in common with the kidney and spinal metastases and
one harbouring mutations in common with the spinal and adrenal metastases.
Perhaps the most parsimonious explanation for the existence of these two
subclones is that two separate metastatic lineages derived from the primary
tumour, and that the bulk sample of the primary included subpopulations
descended from the founding cells of both of these lineages. This hypothesis would
imply either the convergent evolution of a metastatic phenotype, or that the cancer
exhibits a ‘born to be bad’ metastatic subtype with metastatic potential arising very
early in the life history of the disease. Such dynamics have recently been reported in
a cohort of match primary/metastatic breast cancers22. However, without further
validation experiments it is not possible to rule out asynchronous seeding from the
liver/adrenal metastasis back to the primary site.

Regardless of which of these hypotheses is true, neither implies the existence of
extensive polyclonal seeding. The first is entirely concordant with unidirectional,
monoclonal seeding, albeit from separate clones within the primary tumour. The
second implies only asynchronous metastasis to primary seeding which need not be
polyclonal, but, if experimentally verified, would have significant implications for
clinical decision regarding resection of the primary tumour.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Purity and ploidy data are available from Supplementary Data 5. Copy number, SNV
calling, clustering assignment and methylation haplotypes information are available as
Supplementary Data 1, 2, 4 and 7 respectively. Sequence data have been deposited at the
European Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG,
under accession number EGAS00001004014. Further information about EGA can be

found on https://ega-archive.org. LEGACY study Research Ethics Committee approval
(IRB) number was 13/LO/1535. Breast cancer ITH study (Fig. 4h–k) Research Ethics
Committee (IRB) number was 13/LO/1015.
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