3,154 research outputs found
A first broad-scale molecular phylogeny of Prionoceridae (Coleoptera: Cleroidea) provides insight into taxonomy, biogeography and life history evolution
© Senckenberg Gesellschaft fur Naturforschung, 2016. This is an open access article. Authors are permitted to post a PDF of their own articles, as provided by the publisher, on their personal web pages or the web page of their institution. Any commercial use is excluded. The attached file is the published version of the article
Training emergency services’ dispatchers to recognise stroke: an interrupted time-series analysis
Background: Stroke is a time-dependent medical emergency in which early presentation to specialist care reduces death and dependency. Up to 70% of all stroke patients obtain first medical contact from the Emergency Medical Services (EMS). Identifying ‘true stroke’ from an EMS call is challenging, with over 50% of strokes being misclassified.
The aim of this study was to evaluate the impact of the training package on the recognition of stroke by Emergency Medical Dispatchers (EMDs).
Methods: This study took place in an ambulance service and a hospital in England using an interrupted time-series
design. Suspected stroke patients were identified in one week blocks, every three weeks over an 18 month period,
during which time the training was implemented. Patients were included if they had a diagnosis of stroke (EMS or
hospital). The effect of the intervention on the accuracy of dispatch diagnosis was investigated using binomial
(grouped) logistic regression.
Results: In the Pre-implementation period EMDs correctly identified 63% of stroke patients; this increased to 80%
Post-implementation. This change was significant (p=0.003), reflecting an improvement in identifying stroke patients
relative to the Pre-implementation period both the During-implementation (OR=4.10 [95% CI 1.58 to 10.66]) and Post-implementation (OR=2.30 [95% CI 1.07 to 4.92]) periods. For patients with a final diagnosis of stroke who had been dispatched as stroke there was a marginally non-significant 2.8 minutes (95% CI −0.2 to 5.9 minutes, p=0.068)reduction between Pre- and Post-implementation periods from call to arrival of the ambulance at scene.
Conclusions: This is the first study to develop, implement and evaluate the impact of a training package for EMDs with
the aim of improving the recognition of stroke. Training led to a significant increase in the proportion of stroke patients dispatched as such by EMDs; a small reduction in time from call to arrival at scene by the ambulance also appeared likely. The training package has been endorsed by the UK Stroke Forum Education and Training, and is free to access on-line
Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene
An ability to precisely regulate the quantity and location of molecular flux
is of value in applications such as nanoscale 3D printing, catalysis, and
sensor design. Barrier materials containing pores with molecular dimensions
have previously been used to manipulate molecular compositions in the gas
phase, but have so far been unable to offer controlled gas transport through
individual pores. Here, we show that gas flux through discrete angstrom-sized
pores in monolayer graphene can be detected and then controlled using
nanometer-sized gold clusters, which are formed on the surface of the graphene
and can migrate and partially block a pore. In samples without gold clusters,
we observe stochastic switching of the magnitude of the gas permeance, which we
attribute to molecular rearrangements of the pore. Our molecular valves could
be used, for example, to develop unique approaches to molecular synthesis that
are based on the controllable switching of a molecular gas flux, reminiscent of
ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog
Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order
The effective bottom Yukawa couplings are analyzed for the minimal
supersymmetric extension of the Standard Model at two-loop accuracy within
SUSY-QCD. They include the resummation of the dominant corrections for large
values of tg(beta). In particular the two-loop SUSY-QCD corrections to the
leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed.
The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected,
results unchanged, published versio
UK science press officers, professional vision and the generation of expectations
Science press officers can play an integral role in helping promote expectations and hype about biomedical research. Using this as a starting point, this article draws on interviews with 10 UK-based science press officers, which explored how they view their role as science reporters and as generators of expectations. Using Goodwin’s notion of ‘professional vision’, we argue that science press officers have a specific professional vision that shapes how they produce biomedical press releases, engage in promotion of biomedical research and make sense of hype. We discuss how these insights can contribute to the sociology of expectations, as well as inform responsible science communication.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)
Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Gleam: the GLAST Large Area Telescope Simulation Framework
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented.Comment: 10 pages, Late
Immunotherapeutic targeting of membrane Hsp70-expressing tumors using recombinant human granzyme B
Background: We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner
Searches for Lepton Flavour Violation at a Linear Collider
We investigate the prospects for detection of lepton flavour violation in
sparticle production and decays at a Linear Collider (LC), in models guided by
neutrino oscillation data. We consider both slepton pair production and
sleptons arising from the cascade decays of non-leptonic sparticles. We study
the expected signals when lepton-flavour-violating (LFV) interactions are
induced by renormalization effects in the Constrained Minimal Supersymmetric
extension of the Standard Model (CMSSM), focusing on the subset of the
supersymmetric parameter space that also leads to cosmologically interesting
values of the relic neutralino LSP density. Emphasis is given to the
complementarity between the LC, which is sensitive to mixing in both the left
and right slepton sectors, and the LHC, which is sensitive primarily to mixing
in the right sector. We also emphasize the complementarity between searches for
rare LFV processes at the LC and in low-energy experiments.Comment: 19 pages, 10 figure
Adaptive Filtering Enhances Information Transmission in Visual Cortex
Sensory neuroscience seeks to understand how the brain encodes natural
environments. However, neural coding has largely been studied using simplified
stimuli. In order to assess whether the brain's coding strategy depend on the
stimulus ensemble, we apply a new information-theoretic method that allows
unbiased calculation of neural filters (receptive fields) from responses to
natural scenes or other complex signals with strong multipoint correlations. In
the cat primary visual cortex we compare responses to natural inputs with those
to noise inputs matched for luminance and contrast. We find that neural filters
adaptively change with the input ensemble so as to increase the information
carried by the neural response about the filtered stimulus. Adaptation affects
the spatial frequency composition of the filter, enhancing sensitivity to
under-represented frequencies in agreement with optimal encoding arguments.
Adaptation occurs over 40 s to many minutes, longer than most previously
reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio
- …
