1,744 research outputs found

    Trust and privacy in distributed work groups

    Get PDF
    Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file

    Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion

    Get PDF
    International audienceFor a large class of non-negative initial data, the solutions to the quasilinear viscous Hamilton-Jacobi equation tuΔpu+uq=0\partial_t u-\Delta_p u+|\nabla u|^q=0 in (0,)×RN(0,\infty)\times\mathbb{R}^N are known to vanish identically after a finite time when 2N/(N+1)02N/(N+1) 0, the positivity set of u(t)u(t) is a bounded subset of RN\mathbb{R}^N even if u0>0u_0 > 0 in RN\mathbb{R}^N. This decay condition on u0u_0 is also shown to be optimal by proving that the positivity set of any solution emanating from a positive initial condition decaying at a slower rate as x|x|\to\infty is the whole RN\mathbb{R}^N for all times. The time evolution of the positivity set is also studied: on the one hand, it is included in a fixed ball for all times if it is initially bounded (\emph{localization}). On the other hand, it converges to a single point at the extinction time for a class of radially symmetric initial data, a phenomenon referred to as \emph{single point extinction}. This behavior is in sharp contrast with what happens when qq ranges in [p1,p/2)[p-1,p/2) and p(2N/(N+1),2]p\in (2N/(N+1),2] for which we show \emph{complete extinction}. Instantaneous shrinking and single point extinction take place in particular for the semilinear viscous Hamilton-Jacobi equation when p=2p=2 and q(0,1)q\in (0,1) and seem to have remained unnoticed

    Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing

    Get PDF
    The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.National Institutes of Health (U.S.) (Grant R01 GM52339)National Institutes of Health (U.S.) (Pre-Doctoral Training Grant GM007287)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051

    Answer changing in multiple choice assessment change that answer when in doubt – and spread the word!

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies during the last decades have shown that answer changing in multiple choice examinations is generally beneficial for examinees. In spite of this the common misbelief still prevails that answer changing in multiple choice examinations results in an increased number of wrong answers rather than an improved score. One suggested consequence of newer studies is that examinees should be informed about this misbelief in the hope that this prejudice might be eradicated. This study aims to confirm data from previous studies about the benefits of answer changing as well as pursue the question of whether students informed about the said advantageous effects of answer changing would indeed follow this advice and change significantly more answers. Furthermore a look is cast on how the overall examination performance and mean point increase of these students is affected.</p> <p>Methods</p> <p>The answer sheets to the end of term exams of 79 3<sup>rd </sup>year medical students at the University of Munich were analysed to confirm the benefits of answer changing. Students taking the test were randomized into two groups. Prior to taking the test 41 students were informed about the benefits of changing answers after careful reconsideration while 38 students did not receive such information. Both groups were instructed to mark all answer changes made during the test.</p> <p>Results</p> <p>Answer changes were predominantly from wrong to right in full accordance with existing literature resources. It was shown that students who had been informed about the benefits of answer changing when in doubt changed answers significantly more often than students who had not been informed. Though students instructed on the benefits of changing answers scored higher in their exams than those not instructed, the difference in point increase was not significant.</p> <p>Conclusion</p> <p>Students should be informed about the benefits of changing initial answers to multiple choice questions once when in reasonable doubt about these answers. Furthermore, reconsidering answers should be encouraged as students will heed the advice and change more answers than students not so instructed.</p

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    A LASSO-based approach to analyzing rare variants in genetic association studies

    Get PDF
    Genetic markers with rare variants are spread out in the genome, making it necessary and difficult to consider them in genetic association studies. Consequently, wisely combining rare variants into “composite” markers may facilitate meaningful analyses. In this paper, we propose a novel approach of analyzing rare variant data by incorporating the least absolute shrinkage and selection operator technique. We applied this method to the Genetic Analysis Workshop 17 data, and our results suggest that this new approach is promising. In addition, we took advantage of having 200 phenotype replications and assessed the performance of our approach by means of repeated classification tree analyses. Our method and analyses were performed without knowledge of the underlying simulating model. Our method identified 38 markers (in 65 genes) that are significantly associated with the phenotype Affected and correctly identified two causal genes, SIRT1 and PDGFD

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope

    Get PDF
    This paper presents a sensitive and fast cellular shear adhesion force measurement method using an atomic force microscope (AFM). In the work, the AFM was used both as a tool for the imaging of cells on the nano-scale and as a force sensor for the measurement of the shear adhesion force between the cell and the substrate. After the cell imaging, the measurement of cellular shear adhesion forces was made based on the different positions of the cell on the nano-scale. Moreover, different pushing speeds of probe and various locations of cells were used in experiments to study their influences. In this study, the measurement of the cell adhesion in the upper portion of the cell is different from that in the lower portion. It may reveal that the cancer cells have the metastasis tendency after cultured for 16 to 20 hours, which is significant for preventing metastasis in the patients diagnosed with early cancer lesions. Furthermore, the cellular shear adhesion forces of two types of living cancer cells were obtained based on the measurements of AFM cantilever deflections in the torsional and vertical directions. The results demonstrate that the shear adhesion force of cancer cells is twice as much as the same type of cancer cells with TRAIL. The method can also provide a way for the measurement of the cellular shear adhesion force between the cell and the substrate, and for the simultaneous exploration of cells using the AFM imaging and manipulatio
    corecore