11 research outputs found

    Effects of Terpenes and Terpenoids of Natural Occurrence in Essential Oils on Vascular Smooth Muscle and on Systemic Blood Pressure: Pharmacological Studies and Perspective of Therapeutic Use

    Get PDF
    Terpenes are a class of chemical compounds with carbon and hydrogen atoms in their structure. They can be classified into several classes according to the quantity of isoprene units present in its structure. Terpenes can have their structure modified by the addition of various chemical radicals. When these molecules are modified by the addition of atoms other than carbon and hydrogen, they become terpenoids. Terpenes and terpenoids come from the secondary metabolism of several plants. They can be found in the leaves, fruits, stem, flowers, and roots. The concentration of terpenes and terpenoids in these organs can vary according to several factors such as the season, collection method, and time of the day. Several biological activities and physiological actions are attributed to terpenes and terpenoids. Studies in the literature demonstrate that these molecules have antioxidant, anticarcinogenic, anti-inflammatory, antinociceptive, antispasmodic, and antidiabetogenic activities. Additionally, repellent and gastroprotective activity is reported. Among the most prominent activities of monoterpenes and monoterpenoids are those on the cardiovascular system. Reports on literature reveal the potential effect of monoterpenes and monoterpenoids on systemic blood pressure. Studies show that these substances have a hypotensive and bradycardic effect. In addition, the inotropic activity, both positive and negative, of these compounds has been reported. Studies also have shown that some monoterpenes and monoterpenoids also have a vasorelaxing activity on several vascular beds. These effects are attributed, in many cases to the blocking of ion channels, such as voltage-gated calcium channels. It can also be observed that monoterpenes and monoterpenoids can have their effects modulated by the action of the vascular endothelium. In addition, it has been shown that the molecular structure and the presence of chemical groups influence the potency and efficacy of these compounds on vascular beds. Here, the effect of several monoterpenes and monoterpenoids on systemic blood pressure and vascular smooth muscle will be reported

    Essential oil of Croton zehntneri prevents electrophysiological alterations in dorsal root ganglia of streptozotocin-induced diabetes mellitus in rats

    No full text
    Croton zehntneri is an aromatic shrub, native to Northeast Brazil, where it is used in folk medicine. The essential oil of C. zehntneri (EOCz) has shown potent antioxidant and anti-inflammatory activities. Our aim was to investigate the beneficial effect of EOCz on electrophysiological changes in dorsal root ganglia (DRG) of rats with streptozotocin-induced diabetes mellitus (DM). DRG excitability and passive and active membrane properties were studied in control and DM-induced rats. Intracellular recording in current-clamp mode with sharp microelectrode was used. For Na+ channel investigation, patch-clamp recording in whole-cell mode was used. DM caused depolarizations (from -60.6 to -55.0 mV) of resting membrane potential without alteration of cell membrane input resistance. Also, it showed a tendency towards a decrease in rheobase and a tendency for increase in excitability, which was confirmed by increase in Na+ current (from -113.6 to -178.3 pF/pA). EOCz did not reverse the hyperglycemia of DM. Regardless of that, upon oral treatment, EOCz prevented neuronal alterations. EOCz was demonstrated to have low toxicity. The preventive effects of EOCz on neuronal changes coupled with its low toxicity make EOCz a potential candidate for a type of treatment of diabetic neuropathy complementary to therapy with hypoglycemic agents

    Diabetes mellitus differently affects electrical membrane properties of vagal afferent neurons of rats

    No full text
    Abstract To study whether diabetes mellitus (DM) would cause electrophysiological alterations in nodose ganglion (NG) neurons, we used patch clamp and intracellular recording for voltage and current clamp configuration, respectively, on cell bodies of NG from rats with DM. Intracellular microelectrodes recording, according to the waveform of the first derivative of the action potential, revealed three neuronal groups (A0, Ainf, and Cinf), which were differently affected. Diabetes only depolarized the resting potential of A0 (from −55 to −44 mV) and Cinf (from −49 to −45 mV) somas. In Ainf neurons, diabetes increased action potential and the after‐hyperpolarization durations (from 1.9 and 18 to 2.3 and 32 ms, respectively) and reduced dV/dtdesc (from −63 to ‐52 V s−1). Diabetes reduced the action potential amplitude while increasing the after‐hyperpolarization amplitude of Cinf neurons (from 83 and −14 mV to 75 and −16 mV, respectively). Using whole cell patch clamp recording, we observed that diabetes produced an increase in peak amplitude of sodium current density (from −68 to −176 pA pF−1) and displacement of steady‐state inactivation to more negative values of transmembrane potential only in a group of neurons from diabetic animals (DB2). In the other group (DB1), diabetes did not change this parameter (−58 pA pF−1). This change in sodium current did not cause an increase in membrane excitability, probably explainable by the alterations in sodium current kinetics, which are also induced by diabetes. Our data demonstrate that diabetes differently affects membrane properties of different nodose neuron subpopulations, which likely have pathophysiological implications for diabetes mellitus

    Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice

    No full text
    Mentha x villosa Huds (Labiatae) is an aromatic herb widely used in folk medicine. Since the essential oil of the herb has many pharmacological activities, including antispasmodic effects, we determined whether the oil and its major constituent, piperitenone oxide (PO), have antinociceptive activity. The essential oil of M. x villosa (EOMV) and PO administered orally at 200 mg/kg (vehicle: 0.1% Tween 80 in water) significantly reduced the writhings induced by acetic acid from control values of 59.5 ± 3.1 s (N = 10) to 31.9 ± 2.8 s (N = 10) and 23.8 ± 3.4 s (N = 10), respectively. When administered at 100 and 200 mg/kg, EOMV reduced the paw licking time for the second phase of the formalin test from the control value of 20.6 ± 2.1 s (N = 13) to 5.3 ± 2.2 s (N = 12) and 2.7 ± 1.2 s (N = 18), respectively. At 100 and 200 mg/kg, PO reduced this second phase to 8.3 ± 2.7 s (N = 12) and 3.0 ± 1.2 s (N = 10), respectively. This effect of EOMV and PO was not reversed by naloxone. EOMV and PO had no significant effect on the first phase of the formalin test. As evaluated by the hot-plate and tail immersion test, EOMV and PO, at doses up to 200 mg/kg, showed no analgesic activity. These results show that EOMV and PO have antinociceptive activity and suggest that this effect is probably an indirect anti-inflammatory effect, which does not involve the central nervous system

    Hydroxyl Group and Vasorelaxant Effects of Perillyl Alcohol, Carveol, Limonene on Aorta Smooth Muscle of Rats

    No full text
    The present study used isometric tension recording to investigate the vasorelaxant effect of limonene (LM), carveol (CV), and perillyl alcohol (POH) on contractility parameters of the rat aorta, focusing in particular on the structure-activity relationship. LM, CV, and POH showed a reversible inhibitory effect on the contraction induced by electromechanical and pharmacomechanical coupling. In the case of LM, but not CV and POH, this effect was influenced by preservation of the endothelium. POH and CV but not LM exhibited greater pharmacological potency on BayK-8644-induced contraction and on electromechanical coupling than on pharmacomechanical coupling. In endothelium-denuded preparations, the order of pharmacological potency on electrochemical coupling was LM < CV < POH. These compounds inhibited also, with grossly similar pharmacological potency, the contraction induced by phorbol ester dibutyrate. The present results suggest that LM, CV and POH induced relaxant effect on vascular smooth muscle by means of different mechanisms likely to include inhibition of PKC and IP3 pathway. For CV and POH, hydroxylated compounds, it was in electromechanical coupling that the greater pharmacological potency was observed, thus suggesting a relative specificity for a mechanism likely to be important in electromechanical coupling, for example, blockade of voltage-dependent calcium channel

    trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    No full text
    trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh), respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM), inhibited the inward Ba2+ current (IBa) to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade

    Melatonin Reduces Excitability in Dorsal Root Ganglia Neurons with Inflection on the Repolarization Phase of the Action Potential

    No full text
    Melatonin is a neurohormone produced and secreted at night by pineal gland. Many effects of melatonin have already been described, for example: Activation of potassium channels in the suprachiasmatic nucleus and inhibition of excitability of a sub-population of neurons of the dorsal root ganglia (DRG). The DRG is described as a structure with several neuronal populations. One classification, based on the repolarizing phase of the action potential (AP), divides DRG neurons into two types: Without (N0) and with (Ninf) inflection on the repolarization phase of the action potential. We have previously demonstrated that melatonin inhibits excitability in N0 neurons, and in the present work, we aimed to investigate the melatonin effects on the other neurons (Ninf) of the DRG neuronal population. This investigation was done using sharp microelectrode technique in the current clamp mode. Melatonin (0.01–1000.0 nM) showed inhibitory activity on neuronal excitability, which can be observed by the blockade of the AP and by the increase in rheobase. However, we observed that, while some neurons were sensitive to melatonin effect on excitability (excitability melatonin sensitive—EMS), other neurons were not sensitive to melatonin effect on excitability (excitability melatonin not sensitive—EMNS). Concerning the passive electrophysiological properties of the neurons, melatonin caused a hyperpolarization of the resting membrane potential in both cell types. Regarding the input resistance (Rin), melatonin did not change this parameter in the EMS cells, but increased its values in the EMNS cells. Melatonin also altered several AP parameters in EMS cells, the most conspicuously changed was the (dV/dt)max of AP depolarization, which is in coherence with melatonin effects on excitability. Otherwise, in EMNS cells, melatonin (0.1–1000.0 nM) induced no alteration of (dV/dt)max of AP depolarization. Thus, taking these data together, and the data of previous publication on melatonin effect on N0 neurons shows that this substance has a greater pharmacological potency on Ninf neurons. We suggest that melatonin has important physiological function related to Ninf neurons and this is likely to bear a potential relevant therapeutic use, since Ninf neurons are related to nociception
    corecore